Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access


    Experimental Study of Heat Transfer in an Insulated Local Heated from Below and Comparison with Simulation by Lattice Boltzmann Method

    Noureddine Abouricha1,*, Ayoub Gounni2, Mustapha El Alami2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 359-375, 2024, DOI:10.32604/fhmt.2024.047632

    Abstract In this paper, experimental and numerical studies of heat transfer in a test local of side heated from below are presented and compared. All the walls, the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form ( plywood- polystyrene- plywood) just on one of the vertical walls contained a glazed door (). This local is heated during two heating cycles by a square plate of iron the width , which represents the heat source, its temperature is controlled. The plate is heated for two cycles by an adjustable set-point heat source placed just… More >

  • Open Access


    Fine-Tuned Extra Tree Classifier for Thermal Comfort Sensation Prediction

    Ahmad Almadhor1, Chitapong Wechtaisong2,*, Usman Tariq3, Natalia Kryvinska4,*, Abdullah Al Hejaili5, Uzma Ghulam Mohammad6, Mohana Alanazi7

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 199-216, 2024, DOI:10.32604/csse.2023.039546

    Abstract Thermal comfort is an essential component of smart cities that helps to upgrade, analyze, and realize intelligent buildings. It strongly affects human psychological and physiological levels. Residents of buildings suffer stress because of poor thermal comfort. Buildings frequently use Heating, Ventilation, and Air Conditioning (HVAC) systems for temperature control. Better thermal states directly impact people’s productivity and health. This study revealed a human thermal comfort model that makes better predictions of thermal sensation by identifying essential features and employing a tuned Extra Tree classifier, MultiLayer Perceptron (MLP) and Naive Bayes (NB) models. The study employs the ASHRAE RP-884 standard dataset… More >

  • Open Access



    Hussien Aziz Saheb,*, Ala'a Abbas Mahdi, Qusay Rasheed Al-amir

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-15, 2021, DOI:10.5098/hmt.16.9

    Abstract In this study, indoor air quality and thermal comfort were investigated for two persons sitting inside an office room of dimensions (3×2.5×2.5m). The office room is equipped with personal ventilation systems positioned 50 cm from the person's face. These systems are characterized by the ability to change the rates of airflow (ATD). Experimental studies and results were conducted on a thermal manikin that simulates the human body in a sitting position, and the results are compared with CFD analysis using the k-epsilon and the RNG turbulent models. The experimental study focused on measuring the speed and temperature of the air… More >

  • Open Access



    Albio D. Gutierreza,*, Hayri Sezerb, Jose L. Ramirezc

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-12, 2022, DOI:10.5098/hmt.18.4

    Abstract This paper presents a computational model along with a thermal comfort criterion aimed at assisting the design of operating rooms (ORs) from the perspective of meeting suitable flow patterns and thermal comfort conditions for the occupants. The computational model is based on the finite volume method (FVM) to describe the air inside ORs along with the human thermoregulation model implemented in virtual mannequins for thermal comfort. The air model considers turbulent fluid motion, species transport and the conservation of energy, including thermal radiation. The human thermoregulation model incorporates two interacting systems of thermoregulation. Namely, the passive system and the active… More >

  • Open Access


    Comparative Study of Two Materials Combining a Standard Building Material with a PCM

    Marwa El Yassi1,2,*, Ikram El Abbassi1,2, Alexandre Pierre2, Yannick Melinge3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1283-1290, 2023, DOI:10.32604/fdmp.2022.023183

    Abstract Phase change materials (PCMs) have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings. This study focuses on the performances of materials obtained by combining a standard building material with a PCM. In particular, two different materials mixed with the same PCM are considered under the same climatic conditions. The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe. The results show that the addition… More >

  • Open Access


    Numerical Study on the Combined Use of Corten Steel and Phase Change Materials in Container-Type Houses

    Feriel Mustapha1,2,*, Marwa El Yassi1,2, Ikram El Abbassi1,2, Abdelhak Kaci2, Elhadj Kadri2, A-Moumen Darcherif3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 953-958, 2023, DOI:10.32604/fdmp.2022.022028

    Abstract A study is presented on the feasibility of an approach based on the combination of Phase Change Materials (PCM) with metal walls in container-type houses. This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction. Another important objective concerns possible improvements in the comfort provided by such houses during the summer period. The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying degree of success depending on… More >

  • Open Access


    The Impact of Sun Radiation on the Thermal Comfort in Highly Glazed Buildings Equipped with Floor Heating Systems

    Abdelatif Merabtine1,*, Abdelhamid Kheiri2, Salim Mokraoui3, Lyes Bellagh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 941-951, 2023, DOI:10.32604/fdmp.2023.022029

    Abstract Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings, especially when inertial heating systems are used. The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system. A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled, allowing realistic simulations of the dynamic movement of the sun patch on a heated slab. The findings show that a period of discomfort as… More >

  • Open Access


    Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading

    Song Zhang1, Wensheng Li2, Zhao Li2, Xiaolei Zhang1, Zhipeng Lu1, Xiaoning Ge3,*

    Energy Engineering, Vol.120, No.1, pp. 181-199, 2023, DOI:10.32604/ee.2022.022228

    Abstract Driven by the goal of “carbon neutrality” and “emission peak”, effectively controlling system carbon emissions has become significantly important to governments around the world. To this end, a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response (IDR) is proposed in this paper for the integrated energy system (IES), where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR. In contrast, the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables. In… More >

  • Open Access


    Energy Efficient Thermal Comfort Control for Residential Building Based on Nonlinear EMPC

    Xucheng Chang1,*, Bing Kong2, Yong Li1, Gaofeng Ren1, Chao Zhang1, Zhenghe Wang1

    Energy Engineering, Vol.119, No.5, pp. 1941-1966, 2022, DOI:10.32604/ee.2022.020698

    Abstract For purpose of achieving the desired thermal comfort level and reducing the economic cost of maintaining the thermal comfort of green residential building, an energy efficient thermal comfort control strategy based on economic model predictive control (EMPC) for green residential buildings which adopts household heat metering is presented. Firstly, the nonlinear thermal comfort model of heating room is analyzed and obtained. A practical nonlinear thermal comfort prediction model is obtained by using an approximation method. Then, the economic cost function and optimization problem of energy-saving under the necessary thermal comfort requirements are constructed to realize the optimal economic performance of… More >

  • Open Access


    Numerical Study on the Suitability of Passive Solar Heating Technology Based on Differentiated Thermal Comfort Demand

    Xiaona Fan, Qin Zhao, Guochen Sang, Yiyun Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 627-660, 2022, DOI:10.32604/cmes.2022.020507

    Abstract Indoor thermal comfort and passive solar heating technologies have been extensively studied. However, few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands. This work took the rural dwellings in Northwest China as the research object. First, the current indoor and outdoor thermal environment in winter and the mechanism of residents’ differentiated demand for indoor thermal comfort were obtained through tests, questionnaires, and statistical analysis. Second, a comprehensive passive optimized design of existing buildings was conducted, and the validity of the optimized combination scheme was explored using DesignBuilder software. Finally, the suitability of… More >

Displaying 1-10 on page 1 of 15. Per Page