Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Synthesis and Characterization of a Novel Bamboo Shaving Geopolymer Composite

    Jiayu Zhang, Zhenyang Li, Xinli Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2871-2881, 2022, DOI:10.32604/jrm.2022.019373 - 29 June 2022

    Abstract Geopolymers are inorganic aluminosilicate materials, which have been a great research interest as a material for sustainable development. However, they possess relatively low toughness properties similar to brittle solids. The limitation may be altered by fiber reinforcement to improve their strength and toughness. This research describes the synthesis of bamboo shaving (BS) reinforced geopolymer composites and the characterization of their mechanical properties. The effect of BS content (0–2 wt. %) on the physical and mechanical properties and microstructure of metakaolin based geopolymer paste were investigated. The workability, setting time, bulk density, apparent porosity, thermal conductivity,… More >

  • Open Access

    REVIEW

    An Updated Review on Low-Temperature Nanocomposites with a Special Focus on Thermal Management in Buildings

    John Paul1, K. Kadirgama1, M. Samykano2,*, R. Saidur3, A. K. Pandey3, R. V. Mohan4

    Energy Engineering, Vol.119, No.4, pp. 1299-1325, 2022, DOI:10.32604/ee.2022.019172 - 23 May 2022

    Abstract

    Buildings contribute to 33% of total global energy consumption, which corresponds to 38% of greenhouse gas emissions. Enhancing building’s energy efficiency remains predominant in mitigating global warming. Advancements in thermal energy storage (TES) techniques using phase change material (PCM) have gained much attention among researchers, primarily to minimize energy consumption and to promote the use of renewable energy sources. PCM technology stays as the most promising technology for developing high-performance and energy-efficient buildings. The major drawback of PCM is its poor thermal conductivity which limits its potential use which could be resolved by dispersing conductive nanofillers.

    More > Graphic Abstract

    An Updated Review on Low-Temperature Nanocomposites with a Special Focus on Thermal Management in Buildings

  • Open Access

    ARTICLE

    Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw

    Nikola Vavřínová*, Kateřina Stejskalová, Jiří Teslík, Kateřina Kubenková, Jiří Majer

    Journal of Renewable Materials, Vol.10, No.7, pp. 1859-1873, 2022, DOI:10.32604/jrm.2022.018908 - 08 March 2022

    Abstract This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards. This composite material is made of gypsum and reinforcing natural fibers. The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum. From this composite material, high-strength plasterboards could then be produced, which meet the higher demands of users than conventional gypsum plasterboards. For their production, natural waste materials would be used efficiently. As part of… More >

  • Open Access

    ARTICLE

    Thermal Conductivity and Dynamic Viscosity of Highly Mineralized Water

    Dadang Mohamad1,*, Mohammed Abed Jawad2, John William Grimaldo Guerrero3, Tonton Taufik Rachman4, Huynh Tan Hoi5, Albert Kh. Shaikhlislamov6, Mustafa M. Kadhim7, Saif Yaseen Hasan8, A. Surendar9

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 851-866, 2022, DOI:10.32604/fdmp.2022.019485 - 22 February 2022

    Abstract

    Further development in the field of geothermal energy require reliable reference data on the thermophysical properties of geothermal waters, namely, on the thermal conductivity and viscosity of aqueous salt solutions at temperatures of 293–473 K, pressures Ps = 100 MPa, and concentrations of 0–25 wt.%. Given the lack of data and models, especially for the dynamic viscosity of aqueous salt solutions at a pressure of above 40 MPa, generalized formulas are presented here, by which these gaps can be filled. The article presents a generalized formula for obtaining reliable data on the thermal conductivity of water

    More >

  • Open Access

    ARTICLE

    Experimental Performance Evaluation and Artificial-Neural-Network Modeling of ZnO-CuO/EG-W Hybrid Nanofluids

    Yuling Zhai*, Long Li, Zihao Xuan, Mingyan Ma, Hua Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 629-646, 2022, DOI:10.32604/fdmp.2022.017485 - 22 February 2022

    Abstract The thermo-physical properties of nanofluids are highly dependent on the used base fluid. This study explores the influence of the mixing ratio on the thermal conductivity and viscosity of ZnO-CuO/EG (ethylene glycol)-W (water) hybrid nanofluids with mass concentration and temperatures in the ranges 1-5 wt.% and 25-60°C, respectively. The characteristics and stability of these mixtures were estimated by TEM (transmission electron microscopy), visual observation, and absorbance tests. The results show that 120 min of sonication and the addition of PVP (polyvinyl pyrrolidone) surfactant can prevent sedimentation for a period reaching up to 20 days. The… More >

  • Open Access

    ARTICLE

    Effect of Thermal Conductivity of Tube-Wall on Blow-Off Limit of a Micro-Jet Methane Diffusion Flame

    Bing Liu1, Yikun Chen1, Huachen Liu1, Qiao Wu1, Minghui Wang1, Jianlong Wan2,*

    Energy Engineering, Vol.119, No.2, pp. 815-826, 2022, DOI:10.32604/ee.2022.017988 - 24 January 2022

    Abstract The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide, which can be used as the heat source. In order to optimize the micro-jet tube combustor in terms of the solid material, the present paper numerically investigates the impact of thermal conductivity (λs) on the operating limit of micro-jet flame. Unexpectedly, the non-monotonic blow-off limits with the increase of λs is found, and the corresponding generation mechanisms are analyzed in terms of the thermal coupling effect, flow field, and strain effect. At first, the lower preheating temperature of the More >

  • Open Access

    ARTICLE

    Influence of Soil Heterogeneity on the Behavior of Frozen Soil Slope under Freeze-Thaw Cycles

    Kang Liu, Yanqiao Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 119-135, 2022, DOI:10.32604/cmes.2022.018134 - 24 January 2022

    Abstract Soil slope stability in seasonally frozen regions is a challenging problem for geotechnical engineers. The freeze-thaw process of soil slope caused by the temperature fluctuation increases the difficulty in predicting the slope stability because the soil property is influenced by the freeze-thaw cycle. In addition, the frozen soil, which has ice crystal, ice lens and experienced freeze-thaw process, could present stronger heterogeneity. Previous research has not investigated the combined effect of soil heterogeneity and freeze-thaw cycle. This paper studies the influence of soil heterogeneity on the stability of frozen soil slope under freeze-thaw cycles. The… More >

  • Open Access

    ARTICLE

    Numerical Simulation for Bioconvection of Unsteady Stagnation Point Flow of Oldroyd-B Nanofluid with Activation Energy and Temperature-Based Thermal Conductivity Past a Stretching Disk

    Muhammad Sami Rashad1, Haihu Liu1,*, Shan Ali Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 233-254, 2022, DOI:10.32604/cmes.2022.017277 - 29 November 2021

    Abstract A mathematical modeling is explored to scrutinize the unsteady stagnation point flow of Oldroyd-B nanofluid under the thermal conductivity and solutal diffusivity with bioconvection mechanism. Impacts of Joule heating and Arrhenius activation energy including convective boundary conditions are studied, and the specified surface temperature and constant temperature of wall (CTW) are discussed. The consequences of thermal conductivity and diffusivity are also taken into account. The flow is generated through stretchable disk geometry, and the behavior of non-linear thermal radiation is incorporated in energy equation. The partial differential equations governing the fluid flow in the structure… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NUSSELT NUMBER FOR NANOFLUIDS FLOW IN AN INCLINED CYLINDER

    Kafel Azeez Mohammeda,*, Ahmed Mustaffa Saleemb , Zain alabdeen H. Obaida

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.20

    Abstract Numerical investigation is performed for the determination of Nusselt number of ZnO, TiO2 and SiO2 nanoparticles dispersed in 60% ethylene glycol and 40% water inside inclined cylinder for adiabatic and isothermal process. The present study was conducted for both the constant heat flux (10,000 W/m2) and constant wall temperature (313.15 K) boundary conditions. At the inlet, the uniform axial velocity and initial temperature (293 K) were assumed. The results show the change of average Nusselt number at Reynolds number (400), Rayleigh number (106) and volume fraction percentage (2%). From results for adiabatic process when increasing the slop More >

  • Open Access

    ARTICLE

    Model of Fractional Heat Conduction in a Thermoelastic Thin Slim Strip under Thermal Shock and Temperature-Dependent Thermal Conductivity

    F. S. Bayones1, S. M. Abo-Dahab2,*, Ahmed E. Abouelregal3, A. Al-Mullise1, S. Abdel-Khalek1,4, E. M. Khalil1,5

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2899-2913, 2021, DOI:10.32604/cmc.2021.012583 - 01 March 2021

    Abstract The present paper paper, we estimate the theory of thermoelasticity a thin slim strip under the variable thermal conductivity in the fractional-order form is solved. Thermal stress theory considering the equation of heat conduction based on the time-fractional derivative of Caputo of order α is applied to obtain a solution. We assumed that the strip surface is to be free from traction and impacted by a thermal shock. The transform of Laplace (LT) and numerical inversion techniques of Laplace were considered for solving the governing basic equations. The inverse of the LT was applied in More >

Displaying 21-30 on page 3 of 72. Per Page