Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Evaporation Heat Transfer Characteristics from a Sintered Powder Wick Structure Sandwiched between Two Solid Walls

    Yasushi Koito1,*, Shoma Hitotsuya2, Takamitsu Takayama2, Kenta Hashimoto2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 33-46, 2023, DOI:10.32604/fhmt.2023.041829

    Abstract An ultra-thin flattened heat pipe has been developed with a centered wick structure. This structure is essential to make the heat pipe thinner. However, the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls. In this study, because detailed discussion has not been made, heat transfer experiments were conducted for the wick structure sandwiched between two solid walls. This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure. The experiments were conducted with three wick structures, that is, strip-shaped sintered copper powders with… More >

  • Open Access

    ARTICLE

    CFD-BASED STUDY ON HEAT TRANSFER ENHANCEMENT BEHIND A PROJECTION IN A MINIATURIZED FLOW CHANNEL BY PULSATING FLOW

    Wakana Hiratsukaa , Takashi Fukueb,*, Hidemi Shirakawac, Katsuyuki Nakayamad, Yasushi Koitoe

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.16

    Abstract This paper describes a possibility of heat transfer enhancement in a mm-scale flow channel by using a combination of some projections and pulsating flow. The objective of this research is to develop a novel heat exchanger for miniaturized productions such as high-density packaging electronic equipment by applying pulsating flow to enhance heat transfer while inhibiting an increase of pressure drop. In order to evaluate the possibility of applying pulsating flow to miniature water channels, a three-dimensional flow and heat transfer analysis was performed. Heat transfer performance of a combination of pulsating water flow and a projection was investigated. The mechanism… More >

  • Open Access

    ARTICLE

    NUMERICAL ANALYSES ON VAPOR TEMPERATURE DROP IN AN ULTRA-THIN HEAT PIPE WITH A THIN WICK SHEET

    Yasushi Koito*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.8

    Abstract Numerical analyses were conducted for an ultra-thin heat pipe in which a thin wick layer was placed on the bottom. The vapor temperature drop caused by vapor flow friction was discussed for two types of the ultra-thin heat pipes with small and large widths. The numerical results were compared with those obtained for an ultra-thin heat pipe with a centered-wick structure. It was confirmed that the vapor temperature drop was reduced effectively by increasing the width of the heat pipe. Therefore, a wider ultra-thin heat pipe, that is, an ultra-thin vapor chamber is a promising option for nextgeneration thermal management. More >

  • Open Access

    ARTICLE

    A NUMERICAL ANALYSIS ON THE EFFECT OF DEVIATION FROM A CENTERED WICK STRUCTURE IN AN ULTRA-THIN FLATTENED HEAT PIPE

    Yasushi Koitoa,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.1

    Abstract For ultra-thin heat pipes, a centered wick structure is often used. In this study, a numerical analysis is performed on an ultra-thin heat pipe in which the wick structure’s position has deviated from the center. A 3D heat pipe model, developed by the author in a previous study, is extended, and numerical calculations are conducted to determine any differences in performance because of an off-center wick. The major findings are as follows: (1) a completely centered wick structure is recommended for optimum performance; (2) accurate central positioning of the wick structure is important in the fabrication process of ultra-thin heat… More >

  • Open Access

    ARTICLE

    EFFECT OF RIB HEIGHT ON HEAT TRANSFER ENHANCEMENT BY COMBINATION OF A RIB AND PULSATING FLOW

    Shintaro Hayakawaa , Takashi Fukuea,*,† , Yasuhiro Sugimotoa , Wakana Hiratsukab , Hidemi Shirakawac , Yasushi Koitod

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.29

    Abstract This paper describes the effects of a combination of rib and pulsating flow on heat transfer enhancement in an mm-scale model that simulates the narrow flow passages in cooling devices of downsized electronic equipment. This research aims to develop a novel water cooling device that increases heat transfer performance while inhibiting pumping power. Our recent study has reported that a combination of pulsating flow and rib could enhance heat transfer performance relative to the simple duct. In the present study, to verify the optimal rib height for improving heat transfer by pulsating flow, we evaluated the relationship between heat transfer… More >

Displaying 1-10 on page 1 of 5. Per Page