Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    NATURAL CONVECTION ON A POROUS VERTICAL PLATE IN A DOUBLY STRATIFIED NON-DARCY POROUS MEDIUM

    D. Srinivasacharyaa,*, A.J. Chamkhab, O. Surendera, A.M. Rashadc,d

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-7, 2015, DOI:10.5098/hmt.6.19

    Abstract The aim of the present article is to analyze the influence of thermal and mass stratification on natural convection heat and mass transfer over a porous vertical plate with uniform and constant wall temperature and concentration in porous medium. The Brinkman-Forchheimer based model is employed to describe the flow in the porous medium. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms by pseudo-similarity variables. The resulting system of nonlinear, coupled partial differential equations is then solved numerically. The influence of pertinent parameters on the dimensionless velocity, temperature, concentration, heat and mass transfer coefficients… More >

  • Open Access

    ARTICLE

    VARIABLE THERMAL CONDUCTIVITY INFLUENCE ON HYDROMAGNETIC FLOW PAST A STRETCHING CYLINDER IN A THERMALLY STRATIFIED MEDIUM WITH HEAT SOURCE/SINK

    P. Sreenivasulua,*, T. Poornimab,†, N. Bhaskar Reddyc

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.20

    Abstract This paper examines the variable thermal conductivity influence on MHD flow past a thermally stratified stretching cylinder with heat source or sink. The governing partial differential equations of the flow field are converted to a system of non-linear coupled similarity ordinary differential equations. Employing Shooting technique followed by Runge-Kutta method, the system is solved numerically. The effects of the various physical parameters countered in the flow field on the velocity, temperature as well as the skin friction coefficient and the rate of heat transfer near the wall are computed and illustrated graphically. More >

  • Open Access

    REVIEW

    Numerical Analysis of the Mixed Flow of a Non-Newtonian Fluid over a Stretching Sheet with Thermal Radiation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 407-419, 2023, DOI:10.32604/fdmp.2022.020508

    Abstract A mathematical model is elaborated for the laminar flow of an Eyring-Powell fluid over a stretching sheet. The considered non-Newtonian fluid has Prandtl number larger than one. The effects of variable fluid properties and heat generation/absorption are also discussed. The balance equations for fluid flow are reduced to a set of ordinary differential equations through a similarity transformation and solved numerically using a Chebyshev spectral scheme. The effect of various parameters on the rate of heat transfer in the thermal boundary regime is investigated, i.e., thermal conductivity, the heat generation/absorption ratio and the mixed convection parameter. Good agreement appears to… More >

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Simulation of Indoor Air Quality and Thermal Stratification of an Underfloor Air Distribution System (UFAD) with Various Vent Layouts

    Neil Stephen Lopez1,*, Selena Kay Galeos1, Brian Raphael Calderon1, David Roy Dominguez1, Bryan Joseph Uy1, Rupesh Iyengar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 333-347, 2021, DOI:10.32604/fdmp.2021.011213

    Abstract The underfloor air distribution (UFAD) system has not been able to penetrate the residential and commercial air conditioning industry significantly until now. To date, the most notable applications are found in datacenters because of their more demanding thermal stratification and cooling requirements. In addition to highlighting the advantages of the UFAD system over the traditional overhead (OH) system, this study compares various ventilation layouts for a UFAD system. Four different UFAD ventilation layouts are compared and one OH layout. The results show that using multiple swirl-type diffusers creates a more uniform floor-to-knee temperature and less air recirculation than the rectangular… More >

  • Open Access

    ARTICLE

    Computational Analysis of the Oscillatory Mixed Convection Flow along a Horizontal Circular Cylinder in Thermally Stratified Medium

    Zia Ullah1, Muhammad Ashraf1, Saqib Zia2, Yuming Chu3, 4, Ilyas Khan5, *, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 109-123, 2020, DOI:10.32604/cmc.2020.011468

    Abstract The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of thermally stratified medium. To remove the difficulties in illustrating the coupled PDE’s, the finite-difference scheme with efficient primitive-variable formulation is proposed to transform dimensionless equations. The numerical simulations of coupled non-dimensional equations are computed in terms velocity of fluid, temperature and magnetic field which are computed to examine the fluctuating components of skin friction, heat transfer and current density for various emerging parameters. The governing parameters namely, thermally stratification parameter More >

Displaying 1-10 on page 1 of 5. Per Page