Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Modeling Pruning as a Phase Transition: A Thermodynamic Analysis of Neural Activations

    Rayeesa Mehmood*, Sergei Koltcov, Anton Surkov, Vera Ignatenko

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072735 - 12 January 2026

    Abstract Activation pruning reduces neural network complexity by eliminating low-importance neuron activations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired framework that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized free energy technique that More >

  • Open Access

    ARTICLE

    Thermodynamic Analysis of Marangoni Convection in Magnetized Nanofluid

    Joby Mackolil1,2, Mahanthesh Basavarajappa1,3, Giulio Lorenzini4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 529-551, 2025, DOI:10.32604/fhmt.2025.058702 - 25 April 2025

    Abstract This article explores the optimization of heat transport in a magnetohydrodynamic nanofluid flow with mixed Marangoni convection by using the Response Surface Methodology. The convective flow is studied with external magnetism, radiative heat flux, and buoyancy. An internal heat absorption through the permeable surface is also taken into account. The governing system includes the continuity equation, Navier-Stokes momentum equation, and the conservation of energy equations, approximated by the Prandtl boundary layer theory. The entropy generation in the thermodynamic system is evaluated. Experimental data (Corcione models) is used to model the single-phase alumina-water nanofluid. The numerical… More >

  • Open Access

    ARTICLE

    Thermodynamic Analysis and Optimization of the C3/MRC Liquefaction Process

    Guisheng Wang*

    Energy Engineering, Vol.120, No.6, pp. 1503-1514, 2023, DOI:10.32604/ee.2023.027416 - 03 April 2023

    Abstract In the natural gas liquefaction process, the mixed refrigerant natural gas liquefaction process is widely used in LNG liquefaction plants because of its advantages of low energy consumption. This paper focuses on the influences of important parameters in the C3/MRC liquefaction process, that is, the comparison between propane precooling temperature and the number of moles of methane in mixed refrigerant, power consumption and loss. In addition, the total process was optimized with the optimizer and manual adjustment in HYSYS software to minimize the total power consumption. The results show that with increasing propane precooling temperature, More >

  • Open Access

    ARTICLE

    Thermodynamic Simulation on the Change in Phase for Carburizing Process

    Anh Tuan Hoang1, Xuan Phuong Nguyen2, Osamah Ibrahim Khalaf3, Thi Xuan Tran4, Minh Quang Chau5, Thi Minh Hao Dong2, Duong Nam Nguyen6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1129-1145, 2021, DOI:10.32604/cmc.2021.015349 - 22 March 2021

    Abstract The type of technology used to strengthen the surface structure of machine parts, typically by carbon-permeation, has made a great contribution to the mechanical engineering industry because of its outstanding advantages in corrosion resistance and enhanced mechanical and physical properties. Furthermore, carbon permeation is considered as an optimal method of heat treatment through the diffusion of carbon atoms into the surface of alloy steel. This study presented research results on the thermodynamic calculation and simulation of the carbon permeability process. Applying Fick’s law, the paper calculated the distribution of carbon concentration in the alloy steel… More >

  • Open Access

    ARTICLE

    THERMODYNAMIC ANALYSIS FOR THE MHD FLOW OF TWO IMMISCIBLE MICROPOLAR FLUIDS BETWEEN TWO PARALLEL PLATES

    J. Srinivas*, J. V. Ramana Murthy

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-11, 2015, DOI:10.5098/hmt.6.4

    Abstract The paper aims the heat transfer analysis for the flow of two immiscible micropolar fluids inside a horizontal channel, by the first and second laws of thermodynamics under the action of an imposed transverse magnetic field. The plates of the channel are maintained at constant temperatures higher than that of the fluid. The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The condition of hyper-stick is taken on the plates and continuity of velocity, micro-rotation, temperature, heat flux, shear stress and couple stress are imposed More >

Displaying 1-10 on page 1 of 5. Per Page