Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access


    On Mixed Model for Improvement in Stock Price Forecasting

    Qunhui Zhang1, Mengzhe Lu3,4, Liang Dai2,*

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 795-809, 2022, DOI:10.32604/csse.2022.019987

    Abstract Stock market trading is an activity in which investors need fast and accurate information to make effective decisions. But the fact is that forecasting stock prices by using various models has been suffering from low accuracy, slow convergence, and complex parameters. This study aims to employ a mixed model to improve the accuracy of stock price prediction. We present how to use a random walk based on jump-diffusion, to obtain stock predictions with a good-fitting degree by adjusting different parameters. Aimed at getting better parameters and then using the time series model to predict the data, we employed the time… More >

  • Open Access


    Deep Learning Based Modeling of Groundwater Storage Change

    Mohd Anul Haq1,*, Abdul Khadar Jilani1, P. Prabu2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4599-4617, 2022, DOI:10.32604/cmc.2022.020495

    Abstract The understanding of water resource changes and a proper projection of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003–2025 for five basins of Saudi Arabia. An attempt has been made… More >

  • Open Access


    A Non-Destructive Time Series Model for the Estimation of Cherry Coffee Production

    Jhonn Pablo Rodríguez1,*, David Camilo Corrales1,2, David Griol3, Zoraida Callejas3, Juan Carlos Corrales1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4725-4743, 2022, DOI:10.32604/cmc.2022.019135

    Abstract Coffee plays a key role in the generation of rural employment in Colombia. More than 785,000 workers are directly employed in this activity, which represents the 26% of all jobs in the agricultural sector. Colombian coffee growers estimate the production of cherry coffee with the main aim of planning the required activities, and resources (number of workers, required infrastructures), anticipating negotiations, estimating, price, and foreseeing losses of coffee production in a specific territory. These important processes can be affected by several factors that are not easy to predict (e.g., weather variability, diseases, or plagues.). In this paper, we propose a… More >

  • Open Access

    A Hybrid Neural Network and Box-Jenkins Models for Time Series Forecasting

    Mohammad Hadwan1,2,3,*, Basheer M. Al-Maqaleh4 , Fuad N. Al-Badani5 , Rehan Ullah Khan1,3, Mohammed A. Al-Hagery6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4829-4845, 2022, DOI:10.32604/cmc.2022.017824


    Time series forecasting plays a significant role in numerous applications, including but not limited to, industrial planning, water consumption, medical domains, exchange rates and consumer price index. The main problem is insufficient forecasting accuracy. The present study proposes a hybrid forecasting methods to address this need. The proposed method includes three models. The first model is based on the autoregressive integrated moving average (ARIMA) statistical model; the second model is a back propagation neural network (BPNN) with adaptive slope and momentum parameters; and the third model is a hybridization between ARIMA and BPNN (ARIMA/BPNN) and artificial neural networks and ARIMA… More >

  • Open Access


    An Enhanced Routing and Lifetime Performance for Industrial Wireless Sensor Networks

    J. V. Anchitaalagammai1,*, K. Muthumayil2, D. Kamalraj Subramaniam3, Rajesh Verma4, P. Muralikrishnan5, G. Visalaxi6

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1783-1792, 2022, DOI:10.32604/iasc.2022.020967

    Abstract Industrial Wireless Sensor Networks (IWSNs), especially energy resources, are scarce. Since sensor nodes are usually very dense, and the data sampled by the sensor nodes have high redundancy, data aggregation saves energy, reduces the number of transmissions, and eliminates redundancy. Many applications can be used in IIWSNs, and a new technique is introduced to detect multiple sensors embedded in different sensor nodes. Packets created by different applications have different properties. Sensors are resource-constrained devices because it is necessary to find effective reaction analysis methods and transfer sensed data to base stations. Since sensors are resource-constrained devices, efficient topologies require data… More >

  • Open Access


    Generating Synthetic Data to Reduce Prediction Error of Energy Consumption

    Debapriya Hazra, Wafa Shafqat, Yung-Cheol Byun*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3151-3167, 2022, DOI:10.32604/cmc.2022.020143

    Abstract Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions. Energy industries worldwide are trying hard to predict future energy consumption that could eliminate over or under contracting energy resources and unnecessary financing. Machine learning techniques for predicting energy are the trending solution to overcome the challenges faced by energy companies. The basic need for machine learning algorithms to be trained for accurate prediction requires a considerable amount of data. Another critical factor is balancing the data for enhanced prediction. Data Augmentation is a technique used for increasing the… More >

  • Open Access


    Competitive Risk Aware Algorithm for k-min Search Problem

    Iftikhar Ahmad1,*, Abdulwahab Ali Almazroi2, Mohammed A. Alqarni3, Muhammad Kashif Nawaz1

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1131-1142, 2022, DOI:10.32604/iasc.2022.020715

    Abstract In a classical k-min search problem, an online player wants to buy k units of an asset with the objective of minimizing the total buying cost. The problem setting allows the online player to view only a single price quotation at each time step. A price quotation is the price of one unit of an asset. After receiving the price quotation, the online player has to decide on the number of units to buy. The objective of the online player is to buy the required k units in a fixed length investment horizon. Online algorithms are proposed in the literature… More >

  • Open Access


    Electricity Demand Time Series Forecasting Based on Empirical Mode Decomposition and Long Short-Term Memory

    Saman Taheri1, Behnam Talebjedi2,*, Timo Laukkanen2

    Energy Engineering, Vol.118, No.6, pp. 1577-1594, 2021, DOI:10.32604/EE.2021.017795

    Abstract Load forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable of learning temporal dependencies, has been extensively integrated into load forecasting in recent years. To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm breaks down a load time-series data into several sub-series called intrinsic mode functions (IMFs).… More >

  • Open Access


    Design of Neural Network Based Wind Speed Prediction Model Using GWO

    R. Kingsy Grace1,*, R. Manimegalai2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 593-606, 2022, DOI:10.32604/csse.2022.019240

    Abstract The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power. Wind power is the clean, free and conservative renewable energy. It is necessary to predict the wind speed, to implement wind power generation. This paper proposes a new model, named WT-GWO-BPNN, by integrating Wavelet Transform (WT), Back Propagation Neural Network (BPNN) and Grey Wolf Optimization (GWO). The wavelet transform is adopted to decompose the original time series data (wind speed) into approximation and detailed band. GWO – BPNN is applied to predict the wind speed. GWO is used to optimize the parameters… More >

  • Open Access


    Comparison of Missing Data Imputation Methods in Time Series Forecasting

    Hyun Ahn1, Kyunghee Sun2, Kwanghoon Pio Kim3,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 767-779, 2022, DOI:10.32604/cmc.2022.019369

    Abstract Time series forecasting has become an important aspect of data analysis and has many real-world applications. However, undesirable missing values are often encountered, which may adversely affect many forecasting tasks. In this study, we evaluate and compare the effects of imputation methods for estimating missing values in a time series. Our approach does not include a simulation to generate pseudo-missing data, but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom. In an experiment, therefore, several time series forecasting models are trained using different training datasets prepared using each imputation method. Subsequently,… More >

Displaying 41-50 on page 5 of 84. Per Page