Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework

    Chunhao Zhang1,2, Bin Xie2,3,*, Zhibin Huo1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 843-860, 2025, DOI:10.32604/cmc.2025.063151 - 09 June 2025

    Abstract Time series anomaly detection is crucial in finance, healthcare, and industrial monitoring. However, traditional methods often face challenges when handling time series data, such as limited feature extraction capability, poor temporal dependency handling, and suboptimal real-time performance, sometimes even neglecting the temporal relationships between data. To address these issues and improve anomaly detection performance by better capturing temporal dependencies, we propose an unsupervised time series anomaly detection method, VLT-Anomaly. First, we enhance the Variational Autoencoder (VAE) module by redesigning its network structure to better suit anomaly detection through data reconstruction. We introduce hyperparameters to control… More >

  • Open Access

    ARTICLE

    Robust Deep One-Class Classification Time Series Anomaly Detection

    Zhengdao Yang1, Xuewei Wang2, Yuling Chen1,*, Hui Dou1, Haiwei Sang3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5181-5197, 2025, DOI:10.32604/cmc.2025.060564 - 19 May 2025

    Abstract Anomaly detection (AD) in time series data is widely applied across various industries for monitoring and security applications, emerging as a key research focus within the field of deep learning. While many methods based on different normality assumptions perform well in specific scenarios, they often neglected the overall normality issue. Some feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection, leading to decreased performance. Additionally, real-world time series samples are rarely free from noise, making them susceptible to outliers, which further impacts detection accuracy. To address these More >

  • Open Access

    ARTICLE

    TRLLD: Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series

    Qingqing Song1,*, Shaoliang Xia1, Zhen Wu2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2619-2642, 2025, DOI:10.32604/cmc.2025.062526 - 16 April 2025

    Abstract Load time series analysis is critical for resource management and optimization decisions, especially automated analysis techniques. Existing research has insufficiently interpreted the overall characteristics of samples, leading to significant differences in load level detection conclusions for samples with different characteristics (trend, seasonality, cyclicality). Achieving automated, feature-adaptive, and quantifiable analysis methods remains a challenge. This paper proposes a Threshold Recognition-based Load Level Detection Algorithm (TRLLD), which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics. By utilizing distribution density uniformity, the algorithm classifies data points and ultimately… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    FractalNet-LSTM Model for Time Series Forecasting

    Nataliya Shakhovska, Volodymyr Shymanskyi*, Maksym Prymachenko

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4469-4484, 2025, DOI:10.32604/cmc.2025.062675 - 06 March 2025

    Abstract Time series forecasting is important in the fields of finance, energy, and meteorology, but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data. In this paper, we propose the FractalNet-LSTM model, which combines fractal convolutional units with recurrent long short-term memory (LSTM) layers to model time series efficiently. To test the effectiveness of the model, data with complex structures and patterns, in particular, with seasonal and cyclical effects, were used. To better demonstrate the obtained results and the formed conclusions, the model performance was shown on the datasets More >

  • Open Access

    ARTICLE

    Heuristic Feature Engineering for Enhancing Neural Network Performance in Spatiotemporal Traffic Prediction

    Bin Sun1, Yinuo Wang1, Tao Shen1,*, Lu Zhang1, Renkang Geng2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4219-4236, 2025, DOI:10.32604/cmc.2025.060567 - 06 March 2025

    Abstract Traffic datasets exhibit complex spatiotemporal characteristics, including significant fluctuations in traffic volume and intricate periodical patterns, which pose substantial challenges for the accurate forecasting and effective management of traffic conditions. Traditional forecasting models often struggle to adequately capture these complexities, leading to suboptimal predictive performance. While neural networks excel at modeling intricate and nonlinear data structures, they are also highly susceptible to overfitting, resulting in inefficient use of computational resources and decreased model generalization. This paper introduces a novel heuristic feature extraction method that synergistically combines the strengths of non-neural network algorithms with neural networks… More >

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

  • Open Access

    ARTICLE

    DecMamba: Mamba Utilizing Series Decomposition for Multivariate Time Series Forecasting

    Jianxin Feng*, Jianhao Zhang, Ge Cao, Zhiguo Liu, Yuanming Ding

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1049-1068, 2025, DOI:10.32604/cmc.2024.058374 - 03 January 2025

    Abstract Multivariate time series forecasting is widely used in traffic planning, weather forecasting, and energy consumption. Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series. However, the decomposition kernel of previous decomposition-based models is fixed, and these models have not considered the differences in frequency fluctuations between components. These problems make it difficult to analyze the intricate temporal variations of real-world time series. In this paper, we propose a series decomposition-based Mamba model, DecMamba, to obtain the intricate temporal dependencies and… More >

  • Open Access

    ARTICLE

    IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data

    Zhe Li, Yun Liang, Jinyu Wang, Yang Gao*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1171-1192, 2025, DOI:10.32604/cmc.2024.057225 - 03 January 2025

    Abstract Iced transmission line galloping poses a significant threat to the safety and reliability of power systems, leading directly to line tripping, disconnections, and power outages. Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source, neglect of irregular time series, and lack of attention-based closed-loop feedback, resulting in high rates of missed and false alarms. To address these challenges, we propose an Internet of Things (IoT) empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather… More >

  • Open Access

    ARTICLE

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

    Santiago Bañales1,2,*, Raquel Dormido1, Natividad Duro1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 869-907, 2025, DOI:10.32604/cmes.2024.054946 - 17 December 2024

    Abstract Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’ participation in the energy transition. This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons. Smart meter data is split between daily and hourly normalized time series to assess monthly, weekly, daily, and hourly seasonality patterns separately. The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series… More > Graphic Abstract

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

Displaying 1-10 on page 1 of 100. Per Page