Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    ARTICLE

    Using Time Series Foundation Models for Few-Shot Remaining Useful Life Prediction of Aircraft Engines

    Ricardo Dintén*, Marta Zorrilla

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 239-265, 2025, DOI:10.32604/cmes.2025.065461 - 31 July 2025

    Abstract Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate… More >

  • Open Access

    ARTICLE

    SDVformer: A Resource Prediction Method for Cloud Computing Systems

    Shui Liu1,2, Ke Xiong1,2,*, Yeshen Li1,2, Zhifei Zhang1,2,*, Yu Zhang3, Pingyi Fan4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5077-5093, 2025, DOI:10.32604/cmc.2025.064880 - 30 July 2025

    Abstract Accurate prediction of cloud resource utilization is critical. It helps improve service quality while avoiding resource waste and shortages. However, the time series of resource usage in cloud computing systems often exhibit multidimensionality, nonlinearity, and high volatility, making the high-precision prediction of resource utilization a complex and challenging task. At present, cloud computing resource prediction methods include traditional statistical models, hybrid approaches combining machine learning and classical models, and deep learning techniques. Traditional statistical methods struggle with nonlinear predictions, hybrid methods face challenges in feature extraction and long-term dependencies, and deep learning methods incur high… More >

  • Open Access

    ARTICLE

    Analyzing Human Trafficking Networks Using Graph-Based Visualization and ARIMA Time Series Forecasting

    Naif Alsharabi1,*, Akashdeep Bhardwaj2,*

    Journal of Cyber Security, Vol.7, pp. 135-163, 2025, DOI:10.32604/jcs.2025.064019 - 18 June 2025

    Abstract In a world driven by unwavering moral principles rooted in ethics, the widespread exploitation of human beings stands universally condemned as abhorrent and intolerable. Traditional methods employed to identify, prevent, and seek justice for human trafficking have demonstrated limited effectiveness, leaving us confronted with harrowing instances of innocent children robbed of their childhood, women enduring unspeakable humiliation and sexual exploitation, and men trapped in servitude by unscrupulous oppressors on foreign shores. This paper focuses on human trafficking and introduces intelligent technologies including graph database solutions for deciphering unstructured relationships and entity nodes, enabling the comprehensive More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework

    Chunhao Zhang1,2, Bin Xie2,3,*, Zhibin Huo1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 843-860, 2025, DOI:10.32604/cmc.2025.063151 - 09 June 2025

    Abstract Time series anomaly detection is crucial in finance, healthcare, and industrial monitoring. However, traditional methods often face challenges when handling time series data, such as limited feature extraction capability, poor temporal dependency handling, and suboptimal real-time performance, sometimes even neglecting the temporal relationships between data. To address these issues and improve anomaly detection performance by better capturing temporal dependencies, we propose an unsupervised time series anomaly detection method, VLT-Anomaly. First, we enhance the Variational Autoencoder (VAE) module by redesigning its network structure to better suit anomaly detection through data reconstruction. We introduce hyperparameters to control… More >

  • Open Access

    ARTICLE

    Robust Deep One-Class Classification Time Series Anomaly Detection

    Zhengdao Yang1, Xuewei Wang2, Yuling Chen1,*, Hui Dou1, Haiwei Sang3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5181-5197, 2025, DOI:10.32604/cmc.2025.060564 - 19 May 2025

    Abstract Anomaly detection (AD) in time series data is widely applied across various industries for monitoring and security applications, emerging as a key research focus within the field of deep learning. While many methods based on different normality assumptions perform well in specific scenarios, they often neglected the overall normality issue. Some feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection, leading to decreased performance. Additionally, real-world time series samples are rarely free from noise, making them susceptible to outliers, which further impacts detection accuracy. To address these More >

  • Open Access

    ARTICLE

    TRLLD: Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series

    Qingqing Song1,*, Shaoliang Xia1, Zhen Wu2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2619-2642, 2025, DOI:10.32604/cmc.2025.062526 - 16 April 2025

    Abstract Load time series analysis is critical for resource management and optimization decisions, especially automated analysis techniques. Existing research has insufficiently interpreted the overall characteristics of samples, leading to significant differences in load level detection conclusions for samples with different characteristics (trend, seasonality, cyclicality). Achieving automated, feature-adaptive, and quantifiable analysis methods remains a challenge. This paper proposes a Threshold Recognition-based Load Level Detection Algorithm (TRLLD), which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics. By utilizing distribution density uniformity, the algorithm classifies data points and ultimately… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    FractalNet-LSTM Model for Time Series Forecasting

    Nataliya Shakhovska, Volodymyr Shymanskyi*, Maksym Prymachenko

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4469-4484, 2025, DOI:10.32604/cmc.2025.062675 - 06 March 2025

    Abstract Time series forecasting is important in the fields of finance, energy, and meteorology, but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data. In this paper, we propose the FractalNet-LSTM model, which combines fractal convolutional units with recurrent long short-term memory (LSTM) layers to model time series efficiently. To test the effectiveness of the model, data with complex structures and patterns, in particular, with seasonal and cyclical effects, were used. To better demonstrate the obtained results and the formed conclusions, the model performance was shown on the datasets More >

  • Open Access

    ARTICLE

    Heuristic Feature Engineering for Enhancing Neural Network Performance in Spatiotemporal Traffic Prediction

    Bin Sun1, Yinuo Wang1, Tao Shen1,*, Lu Zhang1, Renkang Geng2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4219-4236, 2025, DOI:10.32604/cmc.2025.060567 - 06 March 2025

    Abstract Traffic datasets exhibit complex spatiotemporal characteristics, including significant fluctuations in traffic volume and intricate periodical patterns, which pose substantial challenges for the accurate forecasting and effective management of traffic conditions. Traditional forecasting models often struggle to adequately capture these complexities, leading to suboptimal predictive performance. While neural networks excel at modeling intricate and nonlinear data structures, they are also highly susceptible to overfitting, resulting in inefficient use of computational resources and decreased model generalization. This paper introduces a novel heuristic feature extraction method that synergistically combines the strengths of non-neural network algorithms with neural networks… More >

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

Displaying 11-20 on page 2 of 113. Per Page