Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access


    Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration


    BIOCELL, Vol.47, No.4, pp. 789-808, 2023, DOI:10.32604/biocell.2023.026217

    Abstract Tissues are made up of cells and the extracellular matrix (ECM) which surrounds them. These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life. This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM. Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells, including growth, proliferation, and differentiation. However, the matrix’s characteristic features also impact the repair and regeneration of the… More >

  • Open Access


    Injectable Collagen/CMC Soft Tissue Filler with Developed Flow Properties

    Reza Samanipour1, Aida Pourmostafa2, Adel Marzban2, Sara Tabatabaee3, Hasan Bahraminasab2, Amir Ali Hamidieh4, Amirhossein Tavakoli4,*

    Molecular & Cellular Biomechanics, Vol.19, No.2, pp. 97-104, 2022, DOI:10.32604/mcb.2022.019080

    Abstract Based on the remarkable demand for facial reconstitute or reshape fillers due to the dermal defects arising from specific diseases, trauma, or aging, several natural or synthetic materials have been investigated. Among the evaluated materials, decellularized dermis is one of the most biocompatible choices for the aim of skin tissue regenerative approaches. On the other hand, Carboxymethyl Cellulose (CMC), a synthetic polysaccharide, with the desirable degradability, biomechanical stability, and nontoxicity seems to be an acceptable reinforcement agent for decellularized dermis. Thus, in this research, an injectable soft tissue filler contained of human-derived decellularized collagen and CMC was fabricated. The cell-removal… More >

  • Open Access


    FASTER–RCNN for Skin Burn Analysis and Tissue Regeneration

    C. Pabitha*, B. Vanathi

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 949-961, 2022, DOI:10.32604/csse.2022.021086

    Abstract Skin is the largest body organ that is prone to the environment most specifically. Therefore the skin is susceptible to many damages, including burn damage. Burns can endanger life and are linked to high morbidity and mortality rates. Effective diagnosis with the help of accurate burn zone and wound depth evaluation is important for clinical efficacy. The following characteristics are associated with the skin burn wound, such as healing, infection, painand stress and keloid formation. Tissue regeneration also takes a significant amount of time for formation while considering skin healing after a burn injury. Deep neural networks can automatically assist… More >

  • Open Access


    Mesenchymal stem cells-derived extracellular vesicles as ‘natural’ drug delivery system for tissue regeneration


    BIOCELL, Vol.46, No.4, pp. 899-902, 2022, DOI:10.32604/biocell.2022.018594

    Abstract Mesenchymal stem cells (MSCs) have abilities to mediate tissue protection through mechanisms of anti-apoptosis, anti-oxidative stress and anti-fibrosis as well as tissue regeneration through mechanisms of cell proliferation, differentiation and angiogenesis. These effects by MSCs are mediated by a variety of factors, including growth factors, cytokines and extracellular vesicles (EVs). Among these factors, EVs, containing proteins, mRNA and microRNAs (miRNA), may carry their contents into distant tissues with high stability. Therefore, the treatment with MSC-derived EVs may be promising as ‘natural’ drug delivery systems (DDS). Especially, the treatment of MSC-derived EVs with the manipulation of specific miRNAs expression has been… More >

  • Open Access


    Recent Progress in Medical Biomaterials

    Qiqing Zhang1,2,3,*, Yuan Zhang4, Linzhao Wang4, Yongzhen Xing4

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 134-135, 2019, DOI:10.32604/mcb.2019.07301

    Abstract Guided tissue regeneration (GTR) is a technique that selectively guides cells to attach and proliferate towards an injured site to achieve tissue regeneration through a physical barrier membrane. In this review, we presented a brief overview of the development of GTR technology and GTR materials. Nowadays, new technologies such as electrospinning, nanotechnology, controlled release technique, and 3D printing have been introduced into the study of GTR materials. Resorbable membrane as GTR materials are available as alternatives to conventional non-resorbable membranes. Current GTR materials not only act as a physical barrier membrane but also as a scaffold to play a role… More >

  • Open Access


    Dual 3D Printing Hierarchical Nano/Micro Vascularized Bone Tissue

    Sung Yun Hann1, Haitao Cui1, Timothy Esworthy1, Xuan Zhou1, Se-jun Lee1, Lijie Grace Zhang1,2,3,4,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 76-76, 2019, DOI:10.32604/mcb.2019.07314

    Abstract The vascularization is the most significant to achieve efficient supplement of the nutrients and oxygen for tissue and organ regeneration. However, there is a remaining challenge to fabricate a durable and functional vascularized tissue. Currently, 3D printing has emerged as a promising technique to fabricate vascular networks in many studies due to its superior controllability, reproducibility, and repeatability. In the current study, the main objective is to utilize an advanced dual 3D printing technique including stereolithography (SLA) and fused deposition modeling (FDM) to create a biomimetic bone tissue with perfusable vascular networks. Specifically, the vascularized bone construct was fabricated by… More >

  • Open Access


    Adipose-derived mesenchymal stem/stromal cells: from the lab bench to the basic concepts for clinical translation

    Yesica Romina FRONTINI-LÓPEZ1, Aldana Daniela GOJANOVICH1, Diego MASONE1,2, Diego Martín BUSTOS1,3, Marina UHART1

    BIOCELL, Vol.42, No.3, pp. 67-78, 2018, DOI:10.32604/biocell.2018.07013

    Abstract In the last years, much work has shown that the most effective repair system of the body is represented by stem cells, which are defined as undifferentiated precursors that own unlimited or prolonged self-renewal ability, which also have the potential to transform themselves into various cell types through differentiation.All tissues that form the body contain many different types of somatic cells, along with stem cells that are called ‘mesenchymal stem (or stromal) cells’ (MSC). In certain circumstances, some of these MSC migrate to injured tissues to replace dead cells or to undergo differentiation to repair it.The discovery of MSC has… More >

  • Open Access


    Combining Smaller Patch, RV Remodeling and Tissue Regeneration in Pulmonary Valve Replacement Surgery Design May Lead to Better Post-Surgery RV Cardiac Function for Patients with Tetralogy of Fallot

    Zhedian Zhou1, Tal Geva2, Rahul H. Rathod2, Alexander Tang2, Chun Yang3, Kristen L. Billiar4, Dalin Tang1,*,3, Pedro del Nido5

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 99-115, 2018, DOI: 10.3970/mcb.2018.00558

    Abstract Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results. A computational parametric study using 7 patient-specific RV/LV models based on cardiac magnetic resonance (CMR) data as "virtual surgery" was performed to investigate the impact of patch size, RV remodeling and tissue regeneration in PVR surgery design on RV cardiac functions. Two patch sizes, three degrees of scar trimming (RV… More >

  • Open Access


    3D Fluid-Structure Interaction Canine Heart Model with Patch to Quantify Mechanical Conditions for Optimal Myocardium Stem Cell Growth and Tissue Regeneration

    Heng Zuo*, Dalin Tang*,†,‡, Chun Yang*,§, Glenn Gaudette, Kristen L. Billiar, Pedro J. del NidokII

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 67-85, 2015, DOI:10.3970/mcb.2015.012.067

    Abstract Right ventricular (RV) dysfunction is a common cause of heart failure in patients with congenital heart defects and often leads to impaired functional capacity and premature death. Myocardial tissue regeneration techniques are being developed for the potential that viable myocardium may be regenerated to replace scar tissues in the heart or used as patch material in heart surgery. 3D computational RV/LV/Patch models with fluid-structure interactions (FSI) were constructed based on data from a healthy dog heart to obtain local fluid dynamics and structural stress/strain information and identify optimal conditions under which tissue regeneration techniques could achieve best outcome. RV/LV/Patch geometry… More >

  • Open Access


    Effect of Cartilage Endplate on Cell Based Disc Regeneration: A Finite Element Analysis

    Yongren Wu, Sarah Cisewski, Barton L. Sachs, Hai Yao∗,†,‡

    Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 159-182, 2013, DOI:10.3970/mcb.2013.010.159

    Abstract This study examines the effects of cartilage endplate (CEP) calcification and the injection of intervertebral disc (IVD) cells on the nutrition distributions inside the human IVD under physiological loading conditions using multiphasic finite element modeling. The human disc was modeled as an inhomogeneous mixture consisting of a charged elastic solid, water, ions (Na+ and Cl), and nutrient solute(oxygen,glucose and lactate) phases. The effect of the endplate calcification was simulated by a reduction of the tissue porosity (i.e., water volume faction) from 0.60 to 0.48. The effect of cell injection was simulated by increasing the cell density in the nucleus pulposus… More >

Displaying 1-10 on page 1 of 10. Per Page