Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Numerical Simulations of Irregular Particle Transport in Turbulent Flows Using Coupled LBM-DEM

    K. Han 1, Y. T. Feng 1, D. R. J. Owen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.2, pp. 87-100, 2007, DOI:10.3970/cmes.2007.018.087

    Abstract Numerical procedures are introduced for simulations of irregular particle transport in turbulent flows using the coupled lattice Boltzmann method (LBM) and the discrete element method (DEM). The fluid field is solved by the extended LBM with the incorporation of the Smagorinsky turbulence approach, while particle interaction is modeled by the DEM. The hydrodynamic interactions between fluid and particles are realised through an immersed boundary condition, which gives rise to a coupled solution strategy to model the fluid-particle system under consideration. Main computational aspects comprise the lattice Boltzmann formulation for the solution of fluid flows; the More >

  • Open Access

    ARTICLE

    Turbulent Flow Produced by Twin Slot Jets Impinging a Wall

    Fatiha Bentarzi1, Amina Mataoui1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 107-120, 2018, DOI: 10.3970/fdmp.2018.06046

    Abstract The dynamics of two fully developed turbulent jets, perpendicular to a heated flat plate and related heat transfer mechanism are analysed numerically. This problem is relevant to several thermal engineering applications. The governing equations are solved by a finite volume method with a second order RSM model combined with wall functions used for turbulent modelling. The possibility to improve heat transfer is assessed taking into account the characteristic parameters for the jet-wall interaction. In particular, a parametric study is conducted by varying the jet Reynolds number (Re) and the nozzle to plate distance (D). The… More >

  • Open Access

    ARTICLE

    Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

    B. Wang1, H.Q. Zhang1, C.K. Chan2, X.L. Wang1

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 275-288, 2004, DOI:10.3970/cmc.2004.001.275

    Abstract Dilute gas-particle turbulent flow over a backward-facing step is numerically simulated. Large Eddy Simulation (LES) is used for the continuous phase and a Lagrangian trajectory method is adopted for the particle phase. Four typical locations in the flow field are chosen to investigate the two-phase velocity fluctuations. Time-series velocities of the gas phase with particles of different sizes are obtained. Velocity of the small particles is found to be similar to that of the gas phase, while high frequency noise exists in the velocity of the large particles. While the mean and rms velocities of More >

Displaying 21-30 on page 3 of 23. Per Page