Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    NUMERICAL ANALYSIS OF PASSIVE TWO PHASE FLUID FLOW IN A CLOSED LOOP PULSATING HEAT PIPE

    Roshan Devidas Bhagata,*, Samir J. Deshmukhb

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.23

    Abstract Numerical analysis of passive two phase fluid flow in a 3D Closed Loop Pulsating Heat Pipe (CLPHP) with turns in evaporator and condenser section is carried out. Water is used as working fluid. The volume of fluid model (VOF) is used to simulate passive two-phase fluid flow in a Closed Loop Pulsating Heat Pipe. Filling ratio (FR) of is kept in the range of 60 to 70%. The evaporator temperature is set in the range of 353 K. The condenser temperature is set in the range of 298 K. The contours of volume fraction water, More >

  • Open Access

    ARTICLE

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

    Baris Burak Kanbur, Sheng Quan Heng, Fei Duan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1711-1718, 2022, DOI: 10.32604/fdmp.2022.021792

    Abstract The present study considers the impingement of a train of ethanol droplets on heated aluminum and glass surfaces. The surface temperature is allowed to vary in the interval 140°C–240°C. Impingement is considered with an inclination of 63 degrees. The droplet diameter is 0.2 mm in both aluminum and glass surface experiments. Thermal gradients are observed with a thermographic camera. It is found that in comparison to glass, the aluminum surface displays very small liquid accumulations and better evaporation performance due to its higher thermal conductivity. The relatively low thermal conductivity of glass results in higher More > Graphic Abstract

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

  • Open Access

    ARTICLE

    Hydrodynamic Pattern Investigation of Ethanol Droplet Train Impingement on Heated Aluminum Surface

    Baris Burak Kanbur, Sheng Quan Heng, Fei Duan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1331-1338, 2022, DOI:10.32604/fdmp.2022.021793

    Abstract Steady-state hydrodynamic patterns of ethanol droplet train impingement on the heated aluminum surface is investigated in the surface temperature range of 80°C–260°C using two different Weber numbers (We) of 618 and 792. Instead of a vertical train impingement, the droplet train is sent to the aluminum surface with an incline of 63 degrees. Changes in the spreading length are observed at different surface temperatures for two different We values, which are obtained by using two different pinholes with 100 and 150 μm diameters. The greatest spreading length is seen at the lowest surface temperature (80°C) More >

  • Open Access

    ARTICLE

    Experimental Investigation of Two-Phase Flow Maldistribution in Plate Heat Exchangers

    Zhaiyk Tokhtarov1,*, Vitaly Perov2, Vitaly Borisov3, Evgeny Tikhomirov4, Olga Grunina5, Nadezhda Kapustina5,6, Elmira Cherkasova7, Natalya Suray5

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1015-1024, 2022, DOI:10.32604/fdmp.2022.019534

    Abstract After conducting a critical survey of the different categories of existing heat exchangers, the results of several experiments about the behaviour of a two-phase current in an open channel are reported. The results confirm the complexity of the problems induced in heat exchangers by flow maldistribution, especially when two-phase flows are considered in multi-channel systems. It is shown that severe misalignment of heat exchangers can lead to a loss of economic performance of more than 25%. Improper distribution of fluid flow causes longer fluid coils to form, and the liquid cochlea can eventually occupy a More >

  • Open Access

    ARTICLE

    Two Phase Flow Simulation of Fractal Oil Reservoir Based on Meshless Method

    Xian Zhou1, Fei Wang2, Ziyu Wang3, Yunfeng Xu1,*

    Energy Engineering, Vol.119, No.2, pp. 653-664, 2022, DOI:10.32604/ee.2022.019072

    Abstract The reservoir is the networked rock skeleton of an oil and gas trap, as well as the generic term for the fluid contained within pore fractures and karst caves. Heterogeneity and a complex internal pore structure characterize the reservoir rock. By introducing the fractal permeability formula, this paper establishes a fractal mathematical model of oil-water two-phase flow in an oil reservoir with heterogeneity characteristics and numerically solves the mathematical model using the weighted least squares meshless method. Additionally, the method’s correctness is verified by comparison to the exact solution. The numerical results demonstrate that the… More >

  • Open Access

    ABSTRACT

    Numerical Modeling of Solid Movement in Phase Change Processes

    Igor Vušanović1,*, Vaughan R Voller2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 70-70, 2019, DOI:10.32604/icces.2019.05185

    Abstract In the modeling of liquid to solid phase change processes the movement of the solid phase (e.g., the grains that form when solidifying an alloy) can have a significant impact on the timing and pattern of the process. While a number of solidification models account for the movement of the solid phase, additional analysis is needed to fully understand the phenomena and guide in the selection of appropriate numerical technologies for its resolution. Towards this end, here, we introduce a reduced complexity model (RCM) to describe the solidification of an initially liquid binary material flowing… More >

  • Open Access

    ARTICLE

    Computational Modeling of Gas-Particle Two-Phase Jet by a 3-D Vortex Method

    T.Tsukiji1, Y.Yamamoto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 235-242, 2005, DOI:10.3970/cmes.2005.009.235

    Abstract The grid free computational model of gas-particle two-phase jet flow using a 3-D vortex method is presented. The calculated results using the present method are compared with the previous experimental and the calculated results using DNS. The interaction between the particle and gas-phase is considered using Lagrangian method. It is found that the present computational model of gas-particle two-phase jet flow using the 3-D vortex method is very useful for the prediction of the physical properties of the two-phase jet flow and for saving the computational time. More >

  • Open Access

    ARTICLE

    The Study of Thermal Stresses of a Two Phase FGM Hollow Sphere

    Baoyu Ma1, Guansuo Dui1, Shengyou Yang2, Libiao Xin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.6, pp. 537-554, 2015, DOI:10.3970/cmes.2015.109.537

    Abstract This article focuses on the analytical solution for uniform heating of a FGM hollow sphere made of two phase of different materials. It is assumed that the volume fraction of one phase is a function f1=(rn-an)/(bn-an) varied in the radial direction. Based on the Voigt constant strain approximation, analytical solutions of stresses, displacements and the effective coefficient of thermal expansion are obtained. The effects of the volume fraction, Poisson’s ratio, Young’s moduli and coefficients of thermal expansion on the solutions are studied. Two special cases, constant elastic modulus and constant coefficient of thermal expansion, are More >

  • Open Access

    ARTICLE

    Some Fundamental Properties of Lattice Boltzmann Equation for Two Phase Flows

    Qin Lou1, Zhaoli Guo1,2, Chuguang Zheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 175-188, 2011, DOI:10.3970/cmes.2011.076.175

    Abstract Due to the mesoscopic and kinetic nature, the lattice Boltzmann equation (LBE) method has become an efficient and powerful tool for modeling and simulating interfacial dynamics of multi-phase flows. In this work we discuss several fundamental properties of two-phase LBE models. Particularly, the effects of force discretization, spurious currents in the vicinity of interfaces, and checkerboard effects with the underlying lattices, are investigated. More >

  • Open Access

    ARTICLE

    Modeling Two Phase Flow in Large Scale Fractured Porous Media with an Extended Multiple Interacting Continua Method

    A.B. Tatomir1,2, A.Szymkiewicz3, H. Class1, R. Helmig1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 81-112, 2011, DOI:10.3970/cmes.2011.077.081

    Abstract We present a two phase flow conceptual model, the corresponding simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a continuum fracture approach which uses the multiple interacting continua (MINC) method complemented with an improved upscaling technique. The complex transient behavior of the flow processes in fractured porous media is captured by subgridding the coarse blocks in nested volume elements which have effective properties calculated from the detailed representation of the fracture system. In this way, we keep a physically based approach, preserve the accuracy of the model, avoid the common use of… More >

Displaying 1-10 on page 1 of 10. Per Page