Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Nighttime Intelligent UAV-Based Vehicle Detection and Classification Using YOLOv10 and Swin Transformer

    Abdulwahab Alazeb1, Muhammad Hanzla2, Naif Al Mudawi1,*, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4677-4697, 2025, DOI:10.32604/cmc.2025.065899 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become indispensable for intelligent traffic monitoring, particularly in low-light conditions, where traditional surveillance systems struggle. This study presents a novel deep learning-based framework for nighttime aerial vehicle detection and classification that addresses critical challenges of poor illumination, noise, and occlusions. Our pipeline integrates MSRCR enhancement with OPTICS segmentation to overcome low-light challenges, while YOLOv10 enables accurate vehicle localization. The framework employs GLOH and Dense-SIFT for discriminative feature extraction, optimized using the Whale Optimization Algorithm to enhance classification performance. A Swin Transformer-based classifier provides the final categorization, leveraging hierarchical attention mechanisms More >

  • Open Access

    ARTICLE

    Remote Sensing Imagery for Multi-Stage Vehicle Detection and Classification via YOLOv9 and Deep Learner

    Naif Al Mudawi1,*, Muhammad Hanzla2, Abdulwahab Alazeb1, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4491-4509, 2025, DOI:10.32604/cmc.2025.065490 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning, and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes, frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow… More >

  • Open Access

    ARTICLE

    Enhanced Coverage Path Planning Strategies for UAV Swarms Based on SADQN Algorithm

    Zhuoyan Xie1, Qi Wang1,*, Bin Kong2,*, Shang Gao1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3013-3027, 2025, DOI:10.32604/cmc.2025.064147 - 03 July 2025

    Abstract In the current era of intelligent technologies, comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring, emergency rescue, and agricultural plant protection. Owing to their exceptional flexibility and rapid deployment capabilities, unmanned aerial vehicles (UAVs) have emerged as the ideal platforms for accomplishing these tasks. This study proposes a swarm A*-guided Deep Q-Network (SADQN) algorithm to address the coverage path planning (CPP) problem for UAV swarms in complex environments. Firstly, to overcome the dependency of traditional modeling methods on regular terrain environments, this study proposes an improved cellular decomposition… More >

  • Open Access

    ARTICLE

    An Improved Multi-Actor Hybrid Attention Critic Algorithm for Cooperative Navigation in Urban Low-Altitude Logistics Environments

    Chao Li1,3,#, Quanzhi Feng1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3605-3621, 2025, DOI:10.32604/cmc.2025.063703 - 03 July 2025

    Abstract The increasing adoption of unmanned aerial vehicles (UAVs) in urban low-altitude logistics systems, particularly for time-sensitive applications like parcel delivery and supply distribution, necessitates sophisticated coordination mechanisms to optimize operational efficiency. However, the limited capability of UAVs to extract state-action information in complex environments poses significant challenges to achieving effective cooperation in dynamic and uncertain scenarios. To address this, we presents an Improved Multi-Agent Hybrid Attention Critic (IMAHAC) framework that advances multi-agent deep reinforcement learning (MADRL) through two key innovations. Firstly, a Temporal Difference Error and Time-based Prioritized Experience Replay (TT-PER) mechanism that dynamically adjusts… More >

  • Open Access

    ARTICLE

    Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems

    Ting Chen1, Shuna Jiang2, Xin Fan3,*, Jianchuan Xia2, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2195-2217, 2024, DOI:10.32604/cmc.2024.056960 - 18 November 2024

    Abstract In blockchain-based unmanned aerial vehicle (UAV) communication systems, the length of a block affects the performance of the blockchain. The transmission performance of blocks in the form of finite character segments is also affected by the block length. Therefore, it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems, especially in wireless environments involving UAVs. This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission. In our scheme, using a friendly jamming UAV… More >

  • Open Access

    ARTICLE

    Unmanned Aerial Vehicles General Aerial Person-Vehicle Recognition Based on Improved YOLOv8s Algorithm

    Zhijian Liu*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3787-3803, 2024, DOI:10.32604/cmc.2024.048998 - 26 March 2024

    Abstract Considering the variations in imaging sizes of the unmanned aerial vehicles (UAV) at different aerial photography heights, as well as the influence of factors such as light and weather, which can result in missed detection and false detection of the model, this paper presents a comprehensive detection model based on the improved lightweight You Only Look Once version 8s (YOLOv8s) algorithm used in natural light and infrared scenes (L_YOLO). The algorithm proposes a special feature pyramid network (SFPN) structure and substitutes most of the neck feature extraction module with the Special deformable convolution feature extraction… More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101 - 26 March 2024

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and… More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611 - 26 March 2024

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with… More >

  • Open Access

    REVIEW

    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866 - 26 January 2024

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in… More >

  • Open Access

    ARTICLE

    Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3127-3144, 2023, DOI:10.32604/csse.2023.038959 - 09 November 2023

    Abstract Computational intelligence (CI) is a group of nature-simulated computational models and processes for addressing difficult real-life problems. The CI is useful in the UAV domain as it produces efficient, precise, and rapid solutions. Besides, unmanned aerial vehicles (UAV) developed a hot research topic in the smart city environment. Despite the benefits of UAVs, security remains a major challenging issue. In addition, deep learning (DL) enabled image classification is useful for several applications such as land cover classification, smart buildings, etc. This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification (MDLS-UAVIC) model… More >

Displaying 1-10 on page 1 of 36. Per Page