Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Deep Learning Multimodal for Unstructured and Semi-Structured Textual Documents Classification

    Nany Katamesh, Osama Abu-Elnasr*, Samir Elmougy

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 589-606, 2021, DOI:10.32604/cmc.2021.015761

    Abstract Due to the availability of a huge number of electronic text documents from a variety of sources representing unstructured and semi-structured information, the document classification task becomes an interesting area for controlling data behavior. This paper presents a document classification multimodal for categorizing textual semi-structured and unstructured documents. The multimodal implements several individual deep learning models such as Deep Neural Networks (DNN), Recurrent Convolutional Neural Networks (RCNN) and Bidirectional-LSTM (Bi-LSTM). The Stacked Ensemble based meta-model technique is used to combine the results of the individual classifiers to produce better results, compared to those reached by any of the above mentioned… More >

  • Open Access

    ARTICLE

    Analytical Comparison of Resource Search Algorithms in Non-DHT Mobile Peer-to-Peer Networks

    Ajay Arunachalam1,*, Vinayakumar Ravi2, Moez Krichen3, Roobaea Alroobaea4, Jehad Saad Alqurni5

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 983-1001, 2021, DOI:10.32604/cmc.2021.015371

    Abstract One of the key challenges in ad-hoc networks is the resource discovery problem. How efficiently & quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question? Broadcasting is a basic technique in the Mobile Ad-hoc Networks (MANETs), and it refers to sending a packet from one node to every other node within the transmission range. Flooding is a type of broadcast where the received packet is retransmitted once by every node. The naive flooding technique floods the network with query messages, while the random walk scheme operates by contacting subsets of each… More >

  • Open Access

    ARTICLE

    Automatic BIM Indoor Modelling from Unstructured Point Clouds Using a Convolutional Neural Network

    Uuganbayar Gankhuyag, Ji-Hyeong Han*

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 133-152, 2021, DOI:10.32604/iasc.2021.015227

    Abstract The automated reconstruction of building information modeling (BIM) objects from unstructured point cloud data for indoor as-built modeling is still a challenging task and the subject of much ongoing research. The most important part of the process is to detect the wall geometry clearly. A popular method is first to segment and classify point clouds, after which the identified segments should be clustered according to their corresponding objects, such as walls and clutter. To perform this process, a major problem is low-quality point clouds that are noisy, cluttered and that contain missing parts in the data. Moreover, the size of… More >

  • Open Access

    ARTICLE

    T-Splines Based Isogeometric Topology Optimization with Arbitrarily Shaped Design Domains

    Gang Zhao1,2, Jiaming Yang1, Wei Wang1,*, Yang Zhang1, Xiaoxiao Du1, Mayi Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1033-1059, 2020, DOI:10.32604/cmes.2020.09920

    Abstract In this paper, a new isogeometric topology optimization (ITO) method is proposed by using T-splines based isogeometric analysis (IGA). The arbitrarily shaped design domains, directly obtained from CAD, are represented by a single T-spline surface which overcomes the topological limitations of Non-Uniform Rational B-Spline (NURBS). The coefficients correlated with control points are directly used as design variables. Therefore, the T-spline basis functions applied for geometry description and calculation of structural response are simultaneously introduced to represent the density distribution. Several numerical examples show that the proposed approach leads to a coherent workflow to handle design problems of complicated structures. The… More >

  • Open Access

    ARTICLE

    A Staggered Grid Method for Solving Incompressible Flow on Unstructured Meshes

    Huawen Shu, Minghai Xu, Xinyue Duan*, Yongtong Li, Yu Sun, Ruitian Li, Peng Ding

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 509-523, 2020, DOI:10.32604/cmes.2020.08806

    Abstract A finite volume method based unstructured grid is presented to solve the two dimensional viscous and incompressible flow. The method is based on the pressure-correction concept and solved by using a semi-staggered grid technique. The computational procedure can handle cells of arbitrary shapes, although solutions presented in this paper were only involved with triangular and quadrilateral cells. The pressure or pressure-correction value was stored on the vertex of cells. The mass conservation equation was discretized on the dual cells surrounding the vertex of primary cells, while the velocity components and other scale variables were saved on the central of primary… More >

  • Open Access

    ABSTRACT

    An Intergrid Boundary Reconnection Technique for Conservative Unstructured Overset Mesh Scheme

    Mun Seung Jung1, Oh Joon Kwon2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.3, pp. 77-78, 2009, DOI:10.3970/icces.2009.011.077

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Mesh Quality Improvement for Unstructured Quadrilateral Multigrid Analysis

    Y. Wada1, T. Hayashi2, M. Kikuchi3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.4, pp. 127-132, 2008, DOI:10.3970/icces.2008.008.127

    Abstract Due to more complex and severe design, more effective and faster finite element analyses are demanded. One of the most effective analysis ways is the combination of adaptive analysis and multigrid iterative solver, because an adaptive analysis requires several meshes with different node densities and multigrid solver utilizes such meshes to accelerate its computation. However, convergence of multigrid solver is largely affected by initial shape of each element. An effective mesh improvement method is proposed here. It is the combination of mesh coarsening and refinement. A good mesh can be obtained by the method to be applied to an initial… More >

  • Open Access

    ARTICLE

    Generating optimised partitions for parallel finite element computations employing float-encoded genetic algorithms

    A. Rama Mohan Rao1, T.V.S.R. Appa Rao2, B. Dattaguru3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.3, pp. 213-234, 2004, DOI:10.3970/cmes.2004.005.213

    Abstract This paper presents an algorithm for automatic partitioning of unstructured meshes for parallel finite element computations employing float-encoded genetic algorithms (FEGA). The problem of mesh partitioning is represented in such a way that the number of variables considered in the genome (chromosome) construction is constant irrespective of the size of the problem. In order to accelerate the computational process, several acceleration techniques like constraining the search space, local improvement after initial global partitioning have been attempted. Finally, micro float-encoded genetic algorithms have been developed to accelerate the computational process. More >

  • Open Access

    ARTICLE

    Detailed CVFEM Algorithm for Three Dimensional Advection-diffusion Problems

    E. Tombarević1, V. R. Voller2, I. Vušanović1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.1, pp. 1-29, 2013, DOI:10.3970/cmes.2013.096.001

    Abstract The Control Volume Finite Element Method (CVFEM) combines the geometric flexibility of the Finite Element Method (FEM) with the physical intuition of the Control Volume Method (CVM). These two features of the CVFEM make it a very powerful tool for solving heat and fluid flow problems within complex domain geometries. In solving problems in the two-dimensional domains the development of the CVFEM has been well documented. For the three-dimensional problems, while there is extensive reporting on the details of the numerical approximation, there is relatively sparse information on important issues related to data structure and interpolation. Here, in the context… More >

  • Open Access

    ARTICLE

    High-Order Accurate Methods for Time-domain Electromagnetics

    J. S. Hesthaven1, T. Warburton2

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 395-408, 2004, DOI:10.3970/cmes.2004.005.395

    Abstract We discuss the formulation, validation, and parallel performance of a high-order accurate method for the time-domain solution of the three-dimensional Maxwell's equations on general unstructured grids. Attention is paid to the development of a general discontinuous element/penalty approximation to Maxwell's equations and a locally divergence free form of this. We further discuss the motivation for using a nodal Lagrangian basis for the accurate and efficient representation of solutions and operators. The performance of the scheme is illustrated by solving benchmark problems as well as large scale scattering applications. More >

Displaying 11-20 on page 2 of 25. Per Page