Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Diff-Fastener: A Few-Shot Rail Fastener Anomaly Detection Framework Based on Diffusion Model

    Peng Sun1,2, Dechen Yao1,2,*, Jianwei Yang1,2, Quanyu Long1,2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1221-1239, 2025, DOI:10.32604/sdhm.2025.066098 - 05 September 2025

    Abstract Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions. However, unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images. In this work, we have established a rail fastener anomaly detection framework called Diff-Fastener, the diffusion model is introduced into the fastener detection task, half of the normal samples are converted into anomaly samples online in the model training stage, and One-Step denoising… More >

  • Open Access

    ARTICLE

    Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes

    Peicheng Shi1,*, Yueyue Tang1, Yi Li1, Xinlong Dong1, Yu Sun2, Aixi Yang3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3321-3343, 2025, DOI:10.32604/cmc.2025.065297 - 03 July 2025

    Abstract In the dynamic scene of autonomous vehicles, the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation. To solve this problem, we propose an unsupervised monocular depth estimation model based on edge enhancement, which is specifically aimed at the depth perception challenge in dynamic scenes. The model consists of two core networks: a deep prediction network and a motion estimation network, both of which adopt an encoder-decoder architecture. The depth prediction network is based on the U-Net structure of ResNet18, which is responsible for generating the depth map of the… More >

  • Open Access

    ARTICLE

    An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation

    Jinhai Wang1, Junwei Xue1, Hongyan Zhang2, Hui Xiao3,4, Huiling Wei3,4, Mingyou Chen3,4, Jiang Liao2, Lufeng Luo3,4,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1839-1861, 2025, DOI:10.32604/cmc.2025.064489 - 09 June 2025

    Abstract Defect detection based on computer vision is a critical component in ensuring the quality of industrial products. However, existing detection methods encounter several challenges in practical applications, including the scarcity of labeled samples, limited adaptability of pre-trained models, and the data heterogeneity in distributed environments. To address these issues, this research proposes an unsupervised defect detection method, FLAME (Federated Learning with Adaptive Multi-Model Embeddings). The method comprises three stages: (1) Feature learning stage: this work proposes FADE (Feature-Adaptive Domain-Specific Embeddings), a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator… More >

  • Open Access

    ARTICLE

    TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection

    Isha Sood*, Varsha Sharma

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2791-2818, 2024, DOI:10.32604/cmc.2024.055463 - 18 November 2024

    Abstract Ransomware has emerged as a critical cybersecurity threat, characterized by its ability to encrypt user data or lock devices, demanding ransom for their release. Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases, rendering them less effective against evolving ransomware families. This paper introduces TLERAD (Transfer Learning for Enhanced Ransomware Attack Detection), a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains, enabling robust detection of both known and unknown ransomware variants. The proposed method More >

  • Open Access

    ARTICLE

    Robot Vision over CosGANs to Enhance Performance with Source-Free Domain Adaptation Using Advanced Loss Function

    Laviza Falak Naz1, Rohail Qamar2,*, Raheela Asif1, Muhammad Imran2, Saad Ahmed3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 855-887, 2024, DOI:10.32604/iasc.2024.055074 - 31 October 2024

    Abstract Domain shift is when the data used in training does not match the ones it will be applied to later on under similar conditions. Domain shift will reduce accuracy in results. To prevent this, domain adaptation is done, which adapts the pre-trained model to the target domain. In real scenarios, the availability of labels for target data is rare thus resulting in unsupervised domain adaptation. Herein, we propose an innovative approach where source-free domain adaptation models and Generative Adversarial Networks (GANs) are integrated to improve the performance of computer vision or robotic vision-based systems in… More >

  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    Blockchain-Assisted Unsupervised Learning Method for Crowdsourcing Reputation Management

    Tianyu Wang1,2, Kongyang Chen2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2297-2314, 2024, DOI:10.32604/cmes.2024.049964 - 08 July 2024

    Abstract Crowdsourcing holds broad applications in information acquisition and dissemination, yet encounters challenges pertaining to data quality assessment and user reputation management. Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores, thereby elevating the quality and dependability of crowdsourced data. However, these mechanisms face several challenges in traditional crowdsourcing systems: 1) platform security lacks robust guarantees and may be susceptible to attacks; 2) there exists a potential for large-scale privacy breaches; and 3) incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations, occasionally lacking… More >

  • Open Access

    ARTICLE

    A Web Application Fingerprint Recognition Method Based on Machine Learning

    Yanmei Shi1, Wei Yu2,*, Yanxia Zhao3,*, Yungang Jia4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 887-906, 2024, DOI:10.32604/cmes.2024.046140 - 16 April 2024

    Abstract Web application fingerprint recognition is an effective security technology designed to identify and classify web applications, thereby enhancing the detection of potential threats and attacks. Traditional fingerprint recognition methods, which rely on preannotated feature matching, face inherent limitations due to the ever-evolving nature and diverse landscape of web applications. In response to these challenges, this work proposes an innovative web application fingerprint recognition method founded on clustering techniques. The method involves extensive data collection from the Tranco List, employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction. The core… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis

    Ahmad Alassaf*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2773-2789, 2023, DOI:10.32604/csse.2023.035899 - 09 November 2023

    Abstract Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare. Deep Learning (DL) models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models. On the other hand, skin lesion-based segregation and disintegration procedures play an essential role in earlier skin cancer detection. However, artefacts, an unclear boundary, poor contrast, and different lesion sizes make detection difficult. To address the issues in skin lesion diagnosis, this study creates the UDLS-DDOA model, an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder (UDLS) optimized by Dynamic Differential… More >

  • Open Access

    ARTICLE

    Deep Learning Models Based on Weakly Supervised Learning and Clustering Visualization for Disease Diagnosis

    Jingyao Liu1,2, Qinghe Feng4, Jiashi Zhao2,3, Yu Miao2,3, Wei He2, Weili Shi2,3, Zhengang Jiang2,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2649-2665, 2023, DOI:10.32604/cmc.2023.038891 - 08 October 2023

    Abstract The coronavirus disease 2019 (COVID-19) has severely disrupted both human life and the health care system. Timely diagnosis and treatment have become increasingly important; however, the distribution and size of lesions vary widely among individuals, making it challenging to accurately diagnose the disease. This study proposed a deep-learning disease diagnosis model based on weakly supervised learning and clustering visualization (W_CVNet) that fused classification with segmentation. First, the data were preprocessed. An optimizable weakly supervised segmentation preprocessing method (O-WSSPM) was used to remove redundant data and solve the category imbalance problem. Second, a deep-learning fusion method… More >

Displaying 1-10 on page 1 of 24. Per Page