Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network

    Yuanliang Tang1, 2, Lizhong Mu1, Ying He1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 281-296, 2020, DOI:10.32604/fdmp.2020.06760

    Abstract The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network, and to analyze the influence of structural changes of such a network induced by diabetes. A cubic region representing local skin tissue is selected as the computational domain, which in turn includes two intravascular and extravascular sub-domains. To save computational resources, the capillary network is reduced to a 1D pipeline model and embedded into the extravascular region. On the basis of the immersed boundary method (IBM) strategy, fluid and heat… More >

  • Open Access


    Dual 3D Printing Hierarchical Nano/Micro Vascularized Bone Tissue

    Sung Yun Hann1, Haitao Cui1, Timothy Esworthy1, Xuan Zhou1, Se-jun Lee1, Lijie Grace Zhang1,2,3,4,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 76-76, 2019, DOI:10.32604/mcb.2019.07314

    Abstract The vascularization is the most significant to achieve efficient supplement of the nutrients and oxygen for tissue and organ regeneration. However, there is a remaining challenge to fabricate a durable and functional vascularized tissue. Currently, 3D printing has emerged as a promising technique to fabricate vascular networks in many studies due to its superior controllability, reproducibility, and repeatability. In the current study, the main objective is to utilize an advanced dual 3D printing technique including stereolithography (SLA) and fused deposition modeling (FDM) to create a biomimetic bone tissue with perfusable vascular networks. Specifically, the vascularized bone construct was fabricated by… More >

  • Open Access


    In Vitro Measurement of Blood Flow in Microvascular Network with Realistic Geometry

    Ken-ichi Tsubota1,2,*, Yuya Kodama1, Hiroyoshi Aoki2, Yutaka Yamagata2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 38-39, 2019, DOI:10.32604/mcb.2019.07285

    Abstract We measured a blood flow in a polydimethysiloxane micro channel to reflect the complex geometry of a microvascular network. A flow rate was compared between two working fluids: water and blood. The measured flow rate reflected the bifurcation effects on the apparent viscosity determined by hematocrit, as well as the effects of the surrounding flow channels as bypasses. More >

Displaying 1-10 on page 1 of 3. Per Page