Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Multi-Objective Joint Task Offloading Scheme for Vehicular Edge Computing

    Yiwei Zhang, Xin Cui*, Qinghui Zhao

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2355-2373, 2025, DOI:10.32604/cmc.2025.065430 - 03 July 2025

    Abstract The rapid advance of Connected-Automated Vehicles (CAVs) has led to the emergence of diverse delay-sensitive and energy-constrained vehicular applications. Given the high dynamics of vehicular networks, unmanned aerial vehicles-assisted mobile edge computing (UAV-MEC) has gained attention in providing computing resources to vehicles and optimizing system costs. We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption. We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm (DVCG-MWOA) to address this problem. A novel dynamic clustering algorithm is designed… More >

  • Open Access

    ARTICLE

    A Task Offloading Method for Vehicular Edge Computing Based on Reputation Assessment

    Jun Li1,*, Yawei Dong1, Liang Ni1, Guopeng Feng1, Fangfang Shan1,2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3537-3552, 2025, DOI:10.32604/cmc.2025.059325 - 16 April 2025

    Abstract With the development of vehicle networks and the construction of roadside units, Vehicular Ad Hoc Networks (VANETs) are increasingly promoting cooperative computing patterns among vehicles. Vehicular edge computing (VEC) offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure, thereby reducing the computational burden on connected vehicles. However, this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes. Existing vehicular edge computing platforms have not adequately considered the misbehavior of vehicles. We propose a practical task offloading algorithm based on reputation assessment to More >

  • Open Access

    ARTICLE

    Task Offloading Based on Vehicular Edge Computing for Autonomous Platooning

    Sanghyuck Nam1, Suhwan Kwak1, Jaehwan Lee2, Sangoh Park1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 659-670, 2023, DOI:10.32604/csse.2023.034994 - 20 January 2023

    Abstract Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively. The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units. To solve this problem, there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes. However, the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity. They are also challenging to process… More >

Displaying 1-10 on page 1 of 3. Per Page