Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Elephant Foot Yam Starch-NCC Bionanocomposite Film Incorporated with Virgin Coconut Oil and Monoglyceride for Hydrophobic and Biodegradable Packaging

    Heni Radiani Arifin1,*, Yoan Christina Angelica1, Bambang Nurhadi1, Herlina Marta1, Rossy Choerun Nissa2

    Journal of Renewable Materials, Vol.13, No.3, pp. 617-635, 2025, DOI:10.32604/jrm.2025.057812 - 20 March 2025

    Abstract Bionanocomposite film is produced from renewable and biodegradable natural resources. Although elephant foot yam (EFY) starch (Amorphophallus paeoniifolius) is a promising polymer for bionanocomposite film, the native hydrophilic properties influence the overall performance characteristics. Incorporating virgin coconut oil (VCO) and monoglyceride as hydrophobic components can improve mechanical properties and reduce permeability while increasing the hydrophobicity of the composite. Therefore, this study aimed to determine the effect of adding VCO and monoglyceride on EFY starch-nanocrystalline film at 3 and 5 wt% concentrations. Experimental tests were conducted to evaluate the physical and mechanical properties, water vapor transmission rate… More > Graphic Abstract

    Elephant Foot Yam Starch-NCC Bionanocomposite Film Incorporated with Virgin Coconut Oil and Monoglyceride for Hydrophobic and Biodegradable Packaging

  • Open Access

    ARTICLE

    The Use of Single-Phase Immersion Cooling by Using Two Types of Dielectric Fluid for Data Center Energy Savings

    Nugroho Agung Pambudi*, Awibi Muhamad Yusuf, Alfan Sarifudin

    Energy Engineering, Vol.119, No.1, pp. 275-286, 2022, DOI:10.32604/EE.2022.017356 - 22 November 2021

    Abstract Data centers are recognized as one of the most important aspects of the fourth industrial revolution since conventional data centers are inefficient and have dependency on high energy consumption, in which the cooling is responsible for 40% of the usage. Therefore, this research proposes the immersion cooling method to solving the high energy consumption of data centers by cooling its component using two types of dielectric fluids. Four stages of experimental methods are used, such as fluid types, cooling effectiveness, optimization, and durability. Furthermore, benchmark software is used to measure the CPU maximum work with More >

Displaying 1-10 on page 1 of 2. Per Page