Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Experimental Performance Evaluation and Artificial-Neural-Network Modeling of ZnO-CuO/EG-W Hybrid Nanofluids

    Yuling Zhai*, Long Li, Zihao Xuan, Mingyan Ma, Hua Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 629-646, 2022, DOI:10.32604/fdmp.2022.017485

    Abstract The thermo-physical properties of nanofluids are highly dependent on the used base fluid. This study explores the influence of the mixing ratio on the thermal conductivity and viscosity of ZnO-CuO/EG (ethylene glycol)-W (water) hybrid nanofluids with mass concentration and temperatures in the ranges 1-5 wt.% and 25-60°C, respectively. The characteristics and stability of these mixtures were estimated by TEM (transmission electron microscopy), visual observation, and absorbance tests. The results show that 120 min of sonication and the addition of PVP (polyvinyl pyrrolidone) surfactant can prevent sedimentation for a period reaching up to 20 days. The increase of EG (ethylene glycol)… More >

  • Open Access

    ARTICLE

    The Effect of Bio-Oil on High-Temperature Performance of Bio-Oil Recycled Asphalt Binders

    Hengcong Zhang*, Jianmin Wu, Zhong Qin, Yin Luo

    Journal of Renewable Materials, Vol.10, No.4, pp. 1025-1037, 2022, DOI:10.32604/jrm.2022.017483

    Abstract Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability. This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse. The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%, 2%, 4%, and 6%, respectively. The results showed that bio-oil increased the penetration of aged asphalt binder, the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6% reached the standard of… More >

  • Open Access

    ARTICLE

    Analysis of Convective Transport of Temperature-Dependent Viscosity for Non-Newtonian Erying Powell Fluid: A Numerical Approach

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3, Noor Amalina Nisa Ariffin1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 675-689, 2021, DOI:10.32604/cmc.2020.012334

    Abstract Non-Newtonian is a type of fluid that does not comply with the viscosity under the Law of Newton and is being widely used in industrial applications. These include those related to chemical industries, cosmetics manufacturing, pharmaceutical field, food processing, as well as oil and gas activities. The inability of the conventional equations of Navier–Stokes to accurately depict rheological behavior for certain fluids led to an emergence study for non-Newtonian fluids’ models. In line with this, a mathematical model of forced convective flow on non-Newtonian Eyring Powell fluid under temperature-dependent viscosity (TDV) circumstance is formulated. The fluid model is embedded with… More >

  • Open Access

    ARTICLE

    Mixed Convection of Non-Newtonian Erying Powell Fluid with TemperatureDependent Viscosity over a Vertically Stretched Surface

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 421-435, 2021, DOI:10.32604/cmc.2020.012322

    Abstract The viscosity of a substance or material is intensely influenced by the temperature, especially in the field of lubricant engineering where the changeable temperature is well executed. In this paper, the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition. The flow was assumed to move over a vertical stretching sheet. The model of the problem, which is in partial differential equations, was first transformed to ordinary differential equations using appropriate transformations. This approach was considered to reduce the complexity of the equations. Then, the transformed equations were… More >

  • Open Access

    ARTICLE

    Effect of Phenolation, Lignin-Type and Degree of Substitution on the Properties of Lignin-Modified Phenol-Formaldehyde Impregnation Resins: Molecular Weight Distribution, Wetting Behavior, Rheological Properties and Thermal Curing Profiles

    Marion Thébault1, Larysa Kutuzova2, Sandra Jury1, Iris Eicher1, Edith-Martha Zikulnig-Rusch1, Andreas Kandelbauer2,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 603-630, 2020, DOI:10.32604/jrm.2020.09616

    Abstract Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer by Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 181-198, 2020, DOI:10.32604/fdmp.2020.07804

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open Access

    ARTICLE

    A likely role for the PH-domain containing protein, PEPP2/ PLEKHA5, at the membrane-microtubule cytoskeleton interface

    Yi ZOU1*, Timothy C COX2

    BIOCELL, Vol.37, No.3, pp. 55-61, 2013, DOI:10.32604/biocell.2013.37.055

    Abstract PH (pleckstrin homology) domains are well known to bind membrane phosphoinositides with different specificities and direct PH domain-containing proteins to discrete subcellular compartments with assistances of alternative binding partners. PH domain-containing proteins have been found to be involved in a wide range of cellular events, including signalling, cytoskeleton rearrangement and vesicular trafficking. Here we showed that a novel PH domain-containing protein, PEPP2 (also known as PLEKHA5), displays moderate phosphoinositide binding specificity. Full length PEPP2 was observed to variably associate with both the plasma membrane and microtubules. The membrane-associated PEPP2 nucleated at cell-cell contacts and the leading edge of migrating cells.… More >

  • Open Access

    ARTICLE

    RETRACTED: A likely role for a novel PH-domain containing protein, PEPP2, in connecting membrane and cytoskeleton

    YI ZOU AND WENPING ZHONG

    BIOCELL, Vol.36, No.3, pp. 127-132, 2012, DOI:10.32604/biocell.2012.36.127

    Abstract The published article titled “A likely role for a novel PH-domain containing protein, PEPP2, in connecting membrane and cytoskeleton” has been retracted from the BIOCELL, Vol. 36, Issue 3, 2012. Title: A likely role for a novel PH-domain containing protein, PEPP2, in connecting membrane and cytoskeleton Authors: Yi Zou and Wenping Zhong URL: http://150.109.118.215/uploads/attached/file/20190102/20190102065508_87612.pdf The article “A likely role for a novel PH-domain containing protein, PEPP2, in connecting membrane and cytoskeleton” (Biocell 36, 127-132, 2012) has been retracted after publication by decision of the Editor-in-Chief, after he received compelling evidence indicating that the article’s content was part of a doctoral… More >

  • Open Access

    ABSTRACT

    In Vitro Measurement of Blood Flow in Microvascular Network with Realistic Geometry

    Ken-ichi Tsubota1,2,*, Yuya Kodama1, Hiroyoshi Aoki2, Yutaka Yamagata2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 38-39, 2019, DOI:10.32604/mcb.2019.07285

    Abstract We measured a blood flow in a polydimethysiloxane micro channel to reflect the complex geometry of a microvascular network. A flow rate was compared between two working fluids: water and blood. The measured flow rate reflected the bifurcation effects on the apparent viscosity determined by hematocrit, as well as the effects of the surrounding flow channels as bypasses. More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer By Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 253-270, 2019, DOI:10.32604/fdmp.2019.03896

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

Displaying 31-40 on page 4 of 54. Per Page