Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method

    Linchuan Liu1, Jian Wu2, Zhongwei Hu2, Xiaochao Jin1,*, Pin Lu1, Tao Zhang2, Xueling Fan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1219-1236, 2023, DOI:10.32604/cmes.2022.022221

    Abstract A virtual wall thickness method is developed to simulate the temperature field of turbine blades with thermal barrier coatings (TBCs), to simplify the modeling process and improve the calculation efficiency. The results show that the virtual wall thickness method can improve the mesh quality by 20%, reduce the number of meshes by 76.7% and save the calculation time by 35.5%, compared with the traditional real wall thickness method. The average calculation error of the two methods is between 0.21% and 0.93%. Furthermore, the temperature at the blade leading edge is the highest and the average temperature of the blade pressure… More >

  • Open Access

    ARTICLE

    Prediction of Mechanical Properties of Structural Bamboo and Its Relationship with Growth Parameters

    Pengcheng Liu, Ping Xiang, Qishi Zhou*, Hai Zhang, Jiefu Tian, Misganu Demis Argaw

    Journal of Renewable Materials, Vol.9, No.12, pp. 2223-2239, 2021, DOI:10.32604/jrm.2021.015544

    Abstract Bamboo is a renewable natural building material with good mechanical properties. However, due to the heterogeneity and anisotropy of bamboo stalk, a large amount of material performance testing costs are required in engineering applications. In this work, longitudinal compression, bending, longitudinal shear, longitudinal tensile, transverse compression and transverse tensile tests of bamboo materials are conducted, considering the influence of the bamboo nodes. The mechanical properties of the whole bamboo stalk with the wall thickness and outer circumference are explored. Through univariate and multiple regression analysis, the relationship between mechanical properties and wall thickness and perimeter is fitted, and the conversion… More > Graphic Abstract

    Prediction of Mechanical Properties of Structural Bamboo and Its Relationship with Growth Parameters

  • Open Access

    ARTICLE

    Circulating biomarkers of left ventricular hypertrophy in pediatric coarctation of the aorta

    Benjamin S. Frank1, Tracy T. Urban2, Karlise Lewis2, Suhong Tong3, Courtney Cassidy4, Max B. Mitchell5, Christopher S. Nichols6, Jesse A. Davidson1

    Congenital Heart Disease, Vol.14, No.3, pp. 446-453, 2019, DOI:10.1111/chd.12744

    Abstract Objective: Patients undergoing surgical repair of aortic coarctation have a 50% risk of pathologic left ventricular remodeling (increased left ventricular mass or relative wall thickness). Endothelin 1, ST2, galectin 3, norepinephrine and B‐natriuretic pep‐ tide are biomarkers that have been associated with pathologic LV change in adult populations but their predictive value following pediatric coarctation repair are not known.
    Hypothesis: Biomarker levels at coarctation repair will predict persistent left ven‐ tricular remodeling at 1‐year follow up.
    Design: Prospective, cohort study of 27 patients’ age 2 days‐12 years with coarcta‐ tion of the aorta undergoing surgical repair. Echocardiograms were performed pre‐… More >

  • Open Access

    ARTICLE

    Effect of the Wall Thickness of the Vessel on FFRCT of Carotid Artery Stenosis

    Long Yu1, Kesong Xu1, Jun Wan2, Haiyan Lu3,*, Shengzhang Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 835-844, 2019, DOI:10.32604/cmes.2019.07428

    Abstract Fractional flow reserve (FFR) computed from computed tomography angiography (CTA), i.e., FFRCT has been used in the clinic as a noninvasive parameter for functional assessment of coronary artery stenosis. It has also been suggested to be used in the assessment of carotid artery stenosis. The wall thickness of the vessel is an important parameter when establishing a fluid-structure coupling model of carotid stenosis. This work studies the effect of the vessel wall thickness on hemodynamic parameters such as FFRCT in carotid stenosis. Models of carotid stenosis are established based on CTA image data using computer-aided design software. It is assumed… More >

  • Open Access

    ARTICLE

    Computer Simulations of Atherosclerotic Plaque Growth in Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 193-202, 2010, DOI:10.3970/mcb.2010.007.193

    Abstract A three dimensional mathematical model with a linear plaque growth function was developed to investigate the geometrical adaptation of atherosclerotic plaques in coronary arteries and study the influences of flow wall shear stress (WSS), blood viscosity and the inlet flow rate on the growth of atherosclerotic plaques using computational plaque growth simulations. The simulation results indicated that the plaque wall thickness at the neck of the stenosis increased at a decreasing rate in the atherosclerosis progression. The simulation results also showed a strong dependence of the plaque wall thickness increase on the blood viscosity and the inlet flow rate. The… More >

Displaying 1-10 on page 1 of 5. Per Page