Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    RETRACTION

    Retraction: Fluid Flow and Mixed Heat Transfer in a Horizontal Channel with an Open Cavity and Wavy Wall

    Tohid Adibi1, Shams Forruque Ahmed2,*, Omid Adibi3, Hassan Athari4, Irfan Anjum Badruddin5, Syed Javed5

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 103-103, 2023, DOI:10.32604/iasc.2023.047521

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Fluid Flow and Mixed Heat Transfer in a Horizontal Channel with an Open Cavity and Wavy Wall

    Tohid Adibi1, Shams Forruque Ahmed2,*, Omid Adibi3, Hassan Athari4, Irfan Anjum Badruddin5, Syed Javed5

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 147-163, 2023, DOI:10.32604/iasc.2023.035392

    Abstract Heat exchangers are utilized extensively in different industries and technologies. Consequently, optimizing heat exchangers has been a major concern among researchers. Although various studies have been conducted to improve the heat transfer rate, the use of a wavy wall in the presence of different types of heat transfer mechanisms has not been investigated. This study thus investigates the mixed heat transmission behavior of fluid in a horizontal channel with a cavity and a hot, wavy wall. The fluid flow in the channel is considered laminar, and the governing equations including continuity, momentum, and energy are all solved numerically. The numerical… More >

  • Open Access

    ARTICLE

    MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer in a Wavy Wall Cavity

    A. Arefmanesh1, M. Najafi2, M. Nikfar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.2, pp. 91-118, 2010, DOI:10.3970/cmes.2010.069.091

    Abstract Procuring a numerical solution through an application of the meshless local Petrov-Galerkin method (MLPG) on the fluid flow and mixed convection in a complex geometry cavity filled with a nanofluid is the scope of the present study. The cavity considered is a square enclosure having a lower temperature sliding lid at the top, a differentially higher temperature wavy wall at the bottom, and two thermally insulated walls on the sides. The nanofluid medium used is a water-based nanofluid, Al2O3-water with various volume fractions of its solid. To carry out the numerical simulations, the developed governing equations are determined in terms… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Simulation of Buoyancy-Driven Fluid Flow and Heat Transfer in a Cavity with Wavy Side Walls

    A. Arefmanesh1, M. Najafi2, M. Nikfar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.2, pp. 113-149, 2010, DOI:10.3970/cmes.2010.062.113

    Abstract As some new applications of the meshless local Petrov-Galerkin method (MLPG) with unity as the test function, a number of buoyancy-driven fluid flow natural convection heat transfer problems in cavities with differentially-heated wavy side walls were analyzed. Cavities with a single wavy wall on one side as well as two wavy walls erected on both sides were considered. For the cases of the double wavy walls, two different configurations in terms of the two walls facing each other on the two sides of the cavities symmetrically or non-symmetrically were investigated. All the simulations performed in this work were based on… More >

  • Open Access

    ARTICLE

    Laminar Film Flow Along a Periodic Wall

    V . Bontozoglou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 133-142, 2000, DOI:10.3970/cmes.2000.001.293

    Abstract Laminar, gravity-driven flow of a liquid down an inclined wall with large-amplitude sinusoidal corrugations is studied numerically by a spectral spatial discretization method. The synchronous resonance between the wall and the free surface is investigated for corrugations with wavelength 0.002 m, which – according to linear theory – lead to strongest interaction. Free surface profile and flow structure are studied as a function of the film Reynolds number and the wall amplitude. Streamline patterns are computed and conditions leading to flow reversal are established. The distribution of the shear stress along the wall and of the normal velocity gradient close… More >

Displaying 1-10 on page 1 of 5. Per Page