Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    PROCEEDINGS

    Developing a New Computational Fluid Dynamics Model for Friction Stir Welding of Al/Mg Alloys by Explicitly Including Intermetallic Compound Phase

    Chengle Yang, Qingyu Shi, Gaoqiang Chen*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011530

    Abstract The dissimilar friction stir welding (FSW) of aluminum (Al) and magnesium (Mg) alloys occurs at relatively low temperatures, but how the plastic flow happens under these conditions remains unclear. In this study, a computational fluid dynamics (CFD) model was developed to investigate the thermo-mechanical-flow coupled material behavior during the dissimilar friction stir welding of AA6061-T6 Al alloy and AZ31B Mg alloy. The present work established a generation model and a constitutive model for intermetallic compound (IMC) in welding process. An iso-stress mixing model was utilized to determine the viscosity of the Al-Mg-IMC mixture by volume… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann-Based Numerical Simulation of Laser Welding in Solar Panel Busbars

    Dongfang Li1, Mingliang Zheng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1955-1968, 2025, DOI:10.32604/fdmp.2025.069254 - 12 September 2025

    Abstract To address the limitations of traditional finite element methods, particularly the continuum assumption and difficulties in tracking the solid-liquid interface, this study introduces a lattice Boltzmann-based mathematical and physical model to simulate flow and heat transfer in the laser welding molten pool of tin-coated copper used in solar panel busbars (a thin strip or wire of conductive metal embedded on the surface of a solar cell to collect and conduct the electricity generated by the photovoltaic cell). The model incorporates key external forces, including surface tension, solid-liquid interface tension, and recoil pressure. A moving and… More >

  • Open Access

    ARTICLE

    Ultrasonic Welding of Similar/Dissimilar MEX-3D Printed Parts Considering Energy Director Shape, Infill, Welding Time and Amplitude

    Vivek Kumar Tiwary1,*, Arunkumar P.1, Vinayak R. Malik1,2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5111-5131, 2025, DOI:10.32604/cmc.2025.066129 - 30 July 2025

    Abstract Additive manufacturing (AM), a key technology in the evolution of Industry 4.0, has revolutionized production processes by enabling the precise, layer-by-layer fabrication of complex and customized components, enhancing efficiency and flexibility in smart manufacturing systems. However, one significant challenge hindering the acceptance of this technology is the limited print size, constrained by the machine’s small bed. To address this issue, a suitable polymer joining technique could be applied as a post-fabrication step. The present article examines findings on the Ultrasonic Welding (UW) of Material Extrusion (MEX)-3D printed parts made from commonly used thermoplastics, Acrylonitrile Butadiene… More >

  • Open Access

    ARTICLE

    Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes

    Ziyang Wang1, Lian Duan1,2,*, Lei Kuang1, Haibo Zhou1, Ji’an Duan1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2587-2604, 2025, DOI:10.32604/cmc.2025.065648 - 03 July 2025

    Abstract The packaging quality of coaxial laser diodes (CLDs) plays a pivotal role in determining their optical performance and long-term reliability. As the core packaging process, high-precision laser welding requires precise control of process parameters to suppress optical power loss. However, the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise. To address this challenge, a physics-informed (PI) and data-driven collaboration approach for welding parameter optimization is proposed. First, thermal-fluid-solid coupling finite element method (FEM) was employed to quantify the sensitivity of welding parameters to physical characteristics, including… More >

  • Open Access

    ARTICLE

    Influence of Welding Residual Stress on the Structural Behaviour of Large-Span Steel Tube Arch Rib

    Chunling Yan1,2, Renzhang Yan1,2,*, Zhenxiu Zhan1, Xiyang Chen1, Yu Han3

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1037-1056, 2025, DOI:10.32604/sdhm.2025.058780 - 30 June 2025

    Abstract The steel tube arch rib in a large-span concrete-filled steel tube arch bridge has a large span and diameter, which also leads to a larger weld seam scale. Large-scale welding seams will inevitably cause more obvious welding residual stress (WRS). For the purpose of studying the influence of WRS from large-scale welding seam on the mechanical properties of steel tube arch rib during arch rib splicing, test research and numerical simulation analysis on the WRS in arch rib splicing based on the Guangxi Pingnan Third Bridge, which is the world’s largest span concrete-filled steel… More >

  • Open Access

    PROCEEDINGS

    Hybrid Inverse Modeling Technique to Determine the Fracture Properties of Intermetallic Layer Formed at Al/Steel Dissimilar Weld Interface

    Kiyoaki T. Suzuki1,*, Sylvain Dancette2, Shun Tokita3, Yutaka S. Sato4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012072

    Abstract Dissimilar welding of aluminum (Al) alloy to steel has been a long-running scientific and technological problem mainly for the automotive industry. It would allow to achieve new designs of optimized vehicle structures combining strength, lightweight and energy absorption ability. However, the weld strength is limited because of a brittle intermetallic layer (IML) formed at the weld interface. In our previous study, we demonstrated a significant improvement in weld strength by the addition of Ni to aluminum alloy. However, the effect of Ni addition on the fracture properties of IML remains unexplored. Moreover, additional Ni should… More >

  • Open Access

    PROCEEDINGS

    Challenges and Advances in Spot Joining Processes of Automotive Bodies

    Yongbing Li1,*, Yunwu Ma1, Yujun Xia1, Ming Lou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012602

    Abstract The implementation of lightweight materials and structures in automotive body manufacturing is a strategic approach to improve fuel efficiency of energy-efficient vehicles and driving range of new energy vehicles. However, high specific strength low-ductility light metals (like 7xxx aluminum, magnesium and cast aluminum), ultra-high strength steels, high-stiffness profile structures and their mixed use poses a big challenge to existing commercial spot joining processes, such as resistance spot welding and self-piercing riveting. In this talk, the challenges which new lightweight materials and structures pose to spot joining process will be presented, the bottleneck of the existing More >

  • Open Access

    PROCEEDINGS

    Study on the Effect of Welding Sequence on Residual Stress in Post Internal-Welding Joint of Bimetal Composite Pipe

    Zhenhua Gao1, Bin Han1,*, Shengyuan Niu1, Liying Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-4, 2024, DOI:10.32604/icces.2024.013339

    Abstract With the rapid development of industry and globalization, the demand and strategic importance of oil and natural gas have become increasingly significant, leading to energy extraction in more complex corrosive environments [1, 2]. Bimetallic composite pipes, which offer strength and corrosion resistance, exhibit promising potential. For the welding of bimetallic composite plates, it is optimal to follow the welding sequence of the base layer, transition layer, and inner layer [3, 4]. For the welding of bimetal composite pipes, due to the diameter limit, the inner layer is usually welded first, followed by the transition layer,… More >

  • Open Access

    PROCEEDINGS

    Fatigue Behaviors of Thick Cruciform Joints Made by Q355D Structural Steel Under Different Post-Welding Treatments

    Wei Song1,*, Xiaojian Shi2, Shoupan Wei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012236

    Abstract Different post-welding treatments, such as TIG-Dressing, blinding, HFMI et.al are often used for steel welded joints in construction machinery manufacturing as an effective and reliable method for fatigue strength improvement. This paper investigates the fatigue performance of thick Q355D cruciform joints in heavy load-carrying steel structures under different treatments. Two TIG-Dressing treatments, blinding and HFMI for the full-penetration welded joints were used for fatigue tests. Experimental tests studied the fatigue strength of cruciform welded joints of Q355D structural steel under different treatments. The geometric parameters and relevant statistical analyses were performed by actual 3D optical More >

  • Open Access

    PROCEEDINGS

    A Coupled Thermo-Mechanical Finite Element Method with Optimized Explicit Time Integration for Welding Distortion and Stress Analysis

    Hui Huang1,*, Yongbing Li1, Shuhui Li1, Ninshu Ma2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011348

    Abstract The sequentially coupled thermo-mechanical finite element analysis (FEA) with implicit iteration scheme is widely adopted for welding process simulation because the one-way coupling scheme is believed to be more efficient. However, such computational framework faces the bottleneck of scalability in large-scale analysis due to the exponential growth of computational burden with respect to the number of unknowns in a FEA model. In the present study, a fully coupled approach with explicit integration was developed to simulate fusion welding induced temperature, distortion, and residual stresses. A mass scaling and heat capacity inverse scaling technique was proposed More >

Displaying 1-10 on page 1 of 37. Per Page