Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access


    MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu

    Dingyi Jin1, Guo Wei2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3455-3468, 2024, DOI:10.32604/cmc.2024.048644

    Abstract To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces, this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al, Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic (MD) simulation. The atomic diffusion behaviors are compared between similar metal combinations (Al-Al, Cu-Cu) and dissimilar metal combinations (Al-Cu). By combining the simulation results and classical diffusion theory, the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained. The effects of material combinations and collision velocity on diffusion behaviors More >

  • Open Access


    A Review of the Advances Made in Improving the Durability of Welded Wood against Water in Light of the Results of African Tropical Woods Welding

    Jean Jalin Eyinga Biwôlé1,4,*, Achille Bernard Biwolé1, Antonio Pizzi4,*, Joseph Zobo Mfomo1, César Segovia3, Atangana Ateba2, Evariste Fedoung Fongnzossie1, Sahbi Ouertani4,5, Xinyi Chen4, Bénoît Ndiwe1,2, Dieudonné Abessolo1,2, Pierre-Jean Meausoone4

    Journal of Renewable Materials, Vol.11, No.3, pp. 1077-1099, 2023, DOI:10.32604/jrm.2023.024079

    Abstract Wood plays a major role in the production of furniture and wooden structures. Nevertheless, in this process, the massive use of adhesives and plural connectors remains a definite problem for health and the environment. Therefore, wood welding is a breakthrough in this respect. This paper reviews the applications of wood welding in furniture and construction and then examines advances in improving the durability of welded wood against water. Our contribution also highlights the need to join African tropical woods using the rotational friction welding technique. According to our results, these woods present interesting chemical singularities, More >

  • Open Access


    Causes of the Water Resistance of Welded Joints of Paduk Wood (Pterocarpus soyauxii Taub.)

    T. Ganier, J. Hu, A. Pizzi*

    Journal of Renewable Materials, Vol.1, No.1, pp. 79-82, 2013, DOI:10.7569/JRM.2012.634101

    Abstract Linear vibration welding of extractive rich Paduk wood from central Africa containing a high proportion of a native mixture of water-insoluble extractives, or of low water solubility, has been shown to yield joints of much upgraded water resistance. This has been shown to be due to the protecting infl uence the extractives from the wood itself has on the welded interphase, due to their inherent water repellence. Joints of unusually high percentage wood failure but modest strength were obtained; Paduk wood brittleness apparently yielding weld line strengths always higher than that of the surrounding wood More >

  • Open Access


    Research on Welding Quality Traceability Model of Offshore Platform Block Construction Process

    Jinghua Li1,2, Wenhao Yin2, Boxin Yang1,*, Qinghua Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 699-730, 2023, DOI:10.32604/cmes.2022.020811

    Abstract Quality traceability plays an essential role in assembling and welding offshore platform blocks. The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platform and the process level of the offshore industry. Currently, quality management remains in the era of primary information, and there is a lack of effective tracking and recording of welding quality data. When welding defects are encountered, it is difficult to rapidly and accurately determine the root cause of the problem from various complexities and scattered quality data. In this paper, a composite welding… More >

  • Open Access


    Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks

    Hongfei Wei1,*, Hui Zhao2, Xinlong Shi1, Shuang Liang3

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 51-65, 2022, DOI:10.32604/csse.2022.017739

    Abstract A laser beam is a heat source with a high energy density; this technology has been rapidly developed and applied in the field of welding owing to its potential advantages, and supplements traditional welding techniques. An in-depth analysis of its operating process could establish a good foundation for its application in China. It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process; it comprises a significant number of complex processes with random uncertain factors. Because of their nonlinear mapping and self-learning characteristics, artificial neural networks (ANNs) have certain advantages… More >

  • Open Access


    Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration

    Ying Wang1,*, Zheng Yan1, Zhen Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 549-574, 2021, DOI:10.32604/cmes.2021.014727

    Abstract Due to the complex structure and dense weld of the orthotropic steel bridge deck (OSBD), fatigue cracks are prone to occur in the typical welding details. Welding residual stress (WRS) will cause a plastic zone at the crack tip. In this paper, an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced, and the extended finite element method (XFEM) was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation. By judging the stress state of the residual stress field at the… More >

  • Open Access


    Study on the Bonding Performance of the Moso Bamboo Dowel Welded to a Poplar Substrate Joint by High-Speed Rotation

    Suxia Li1,2, Haiyang Zhang1,*, Biqing Shu1,3, Liangsong Cheng1, Zehui Ju1, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.9, No.7, pp. 1225-1237, 2021, DOI:10.32604/jrm.2021.014364

    Abstract The wood friction welding technique with its high bonding strength, low cost, high efficiency, and without any adhesive has been increasing concern in China. Moso bamboo (Phyllostachys pubescens) and poplar (Populus sp.) are widely planted and used in the furniture industry, interior decoration, and wood structure construction in China. The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios. The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance. The bonding strength of the… More >

  • Open Access


    Improved Geometric Anisotropic Diffusion Filter for Radiography Image Enhancement

    Mohamed Ben Gharsallaha, Issam Ben Mhammedb, Ezzedine Ben Braieka

    Intelligent Automation & Soft Computing, Vol.24, No.2, pp. 231-240, 2018, DOI:10.1080/10798587.2016.1262457

    Abstract In radiography imaging, contrast, sharpness and noise there are three fundamental factors that determine the image quality. Removing noise while preserving and sharpening image contours is a complicated task particularly for images with low contrast like radiography. This paper proposes a new anisotropic diffusion method for radiography image enhancement. The proposed method is based on the integration of geometric parameters derived from the local pixel intensity distribution in a nonlinear diffusion formulation that can concurrently perform the smoothing and the sharpening operations. The main novelty of the proposed anisotropic diffusion model is the ability to More >

  • Open Access


    Review on the Prediction of Residual Stress in Welded Steel Components

    Junyan Ni1, Xincun Zhuang2, 3, Magd Abdel Wahab4, 5, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 495-523, 2020, DOI:10.32604/cmc.2020.08448

    Abstract Residual stress after welding has negative effects on the service life of welded steel components or structures. This work reviews three most commonly used methods for predicting residual stress, namely, empirical, semi-empirical and process simulation methods. Basic principles adopted by these methods are introduced. The features and limitations of each method are discussed as well. The empirical method is the most practical but its accuracy relies heavily on experiments. Mechanical theories are employed in the semi-empirical method, while other aspects, such as temperature variation and phase transformation, are simply ignored. The process simulation method has More >

  • Open Access


    Damage Monitoring of Ultrasonically Welded Aluminum / CFRP-Joints during Cyclic Loading via Electrical Resistance Measurements

    F. Balle1, S. Huxhold1, G. Wagner1, D. Eifler1

    Structural Durability & Health Monitoring, Vol.8, No.4, pp. 359-370, 2012, DOI:10.32604/sdhm.2012.008.359

    Abstract Aluminum alloys and carbon fiber reinforced polymers (CFRP) are two important materials for lightweight design and the combination of these dissimilar materials becomes increasingly important. Recent investigations have shown that ultrasonic metal welding is a well suited process to realize aluminum/CFRP-joints.The ultrasonic shear oscillation parallel to the welding zone with a simultaneous welding force perpendicular to the aluminum/CFRP-sheets melts the polymer matrix and squeezes the polymer matrix out of the welding zone. This allows a direct contact between the carbon fibers and the aluminum. Beside monotonic properties the cyclic deformation behavior of these ultrasonically welded More >

Displaying 1-10 on page 1 of 23. Per Page