Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li, Mohammad Alanaqreh

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 63-77, 2023, DOI:10.32604/cmc.2023.042183

    Abstract Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses. Recent advancements in deep learning (DL) techniques have shown promising results in detecting pavement cracks; however, the selection of relevant features for classification remains challenging. In this study, we propose a new approach for pavement crack detection that integrates deep learning for feature extraction, the whale optimization algorithm (WOA) for feature selection, and random forest (RF) for classification. The performance of the models was evaluated using accuracy, recall, precision, F1 score, and area under the receiver operating characteristic curve (AUC). Our findings reveal that Model… More >

  • Open Access

    ARTICLE

    Advanced Guided Whale Optimization Algorithm for Feature Selection in BlazePose Action Recognition

    Motasem S. Alsawadi1,*, El-Sayed M. El-kenawy2, Miguel Rio1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2767-2782, 2023, DOI:10.32604/iasc.2023.039440

    Abstract The BlazePose, which models human body skeletons as spatiotemporal graphs, has achieved fantastic performance in skeleton-based action identification. Skeleton extraction from photos for mobile devices has been made possible by the BlazePose system. A Spatial-Temporal Graph Convolutional Network (STGCN) can then forecast the actions. The Spatial-Temporal Graph Convolutional Network (STGCN) can be improved by simply replacing the skeleton input data with a different set of joints that provide more information about the activity of interest. On the other hand, existing approaches require the user to manually set the graph’s topology and then fix it across all input layers and samples.… More >

  • Open Access

    ARTICLE

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

    Tiantian Liang*, Runze Wang, Xuxiu Zhang, Yingdong Wang, Jianxiong Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 433-455, 2023, DOI:10.32604/sdhm.2023.029331

    Abstract In this study, an optimized long short-term memory (LSTM) network is proposed to predict the reliability and remaining useful life (RUL) of rolling bearings based on an improved whale-optimized algorithm (IWOA). The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing. To provide covariates for reliability assessment, a kernel principal component analysis is used to reduce the dimensionality of the features. A Weibull distribution proportional hazard model (WPHM) is used for the reliability assessment of rolling bearing, and a beluga whale optimization (BWO) algorithm is… More > Graphic Abstract

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

  • Open Access

    ARTICLE

    Safety Assessment of Liquid Launch Vehicle Structures Based on Interpretable Belief Rule Base

    Gang Xiang1,2, Xiaoyu Cheng3, Wei He3,4,*, Peng Han3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 273-298, 2023, DOI:10.32604/csse.2023.037892

    Abstract A liquid launch vehicle is an important carrier in aviation, and its regular operation is essential to maintain space security. In the safety assessment of fluid launch vehicle body structure, it is necessary to ensure that the assessment model can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process. Therefore, a belief rule base with interpretability (BRB-i) assessment method of liquid launch vehicle structure safety status combines data and knowledge. Moreover, an innovative whale optimization algorithm with interpretable constraints is proposed. The experiments are carried out based on the liquid launch… More >

  • Open Access

    ARTICLE

    A Whale Optimization Algorithm with Distributed Collaboration and Reverse Learning Ability

    Zhedong Xu*, Yongbo Su, Fang Yang, Ming Zhang

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5965-5986, 2023, DOI:10.32604/cmc.2023.037611

    Abstract Due to the development of digital transformation, intelligent algorithms are getting more and more attention. The whale optimization algorithm (WOA) is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems. However, with the increased dimensions, higher requirements are put forward for algorithm performance. The double population whale optimization algorithm with distributed collaboration and reverse learning ability (DCRWOA) is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems. In the DCRWOA algorithm, the novel double population search strategy is constructed. Meanwhile, the reverse learning strategy… More >

  • Open Access

    ARTICLE

    PREDICTION MODEL OF WAX DEPOSITION RATE BASED ON WOABPNN ALGORITHM

    Rongge Xiaoa,* , Qi Zhuanga, Shuaishuai Jina , Wenbo Jina

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-7, 2022, DOI:10.5098/hmt.18.8

    Abstract A model for predicting wax deposition rate in pipeline transportation is constructed to predict wax deposition in actual pipeline, which can provide decision support for the flow guarantee of waxy crude oil in pipeline transportation. This paper analyzes the working principle of Back Propagation Neural Networks (BPNN). Aiming at the problems of BPNN model, such as over learning, long training time, low generalization ability and easy to fall into local minimum, the paper proposes an improved scheme of using Whale Optimization Algorithm (WOA) to optimize BPNN model(WOABPNN).Taking 38 groups of crude oil wax deposition experimental data in Huachi operation area… More >

  • Open Access

    ARTICLE

    Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms

    Siling Feng1, Yinjie Chen1, Mengxing Huang1,2,*, Feng Shu1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4341-4355, 2023, DOI:10.32604/cmc.2023.037154

    Abstract Due to their adaptability, Unmanned Aerial Vehicles (UAVs) play an essential role in the Internet of Things (IoT). Using wireless power transfer (WPT) techniques, an UAV can be supplied with energy while in flight, thereby extending the lifetime of this energy-constrained device. This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously. In this paper, we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks. It is a practical solution to the problem of marine sensor networks that are located far from… More >

  • Open Access

    ARTICLE

    Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems

    Yuzhou Li*, Chuanxia Sun, Yinglei Hu

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3497-3515, 2023, DOI:10.32604/cmc.2023.035878

    Abstract Driver identification in intelligent transport systems has immense demand, considering the safety and convenience of traveling in a vehicle. The rapid growth of driver assistance systems (DAS) and driver identification system propels the need for understanding the root causes of automobile accidents. Also, in the case of insurance, it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing. It is observed that drivers with frequent records of paying “fines” are compelled to pay higher insurance payments than drivers without any penalty records. Thus driver identification act as an important information source… More >

  • Open Access

    ARTICLE

    Improved Whale Optimization with Local-Search Method for Feature Selection

    Malek Alzaqebah1,2,*, Mutasem K. Alsmadi3, Sana Jawarneh4, Jehad Saad Alqurni5, Mohammed Tayfour3, Ibrahim Almarashdeh3, Rami Mustafa A. Mohammad6, Fahad A. Alghamdi3, Nahier Aldhafferi6, Abdullah Alqahtani6, Khalid A. Alissa7, Bashar A. Aldeeb8, Usama A. Badawi3, Maram Alwohaibi1,2, Hayat Alfagham3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1371-1389, 2023, DOI:10.32604/cmc.2023.033509

    Abstract Various feature selection algorithms are usually employed to improve classification models’ overall performance. Optimization algorithms typically accompany such algorithms to select the optimal set of features. Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics. The present paper presents two Stages of Local Search models for feature selection based on WOA (Whale Optimization Algorithm) and Great Deluge (GD). GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search. Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.… More >

  • Open Access

    ARTICLE

    A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis

    Chen Wei-wei1, He Wei1,2,*, Zhu Hai-long1, Zhou Guo-hui1, Mu Quan-qi1, Han Peng1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6119-6143, 2023, DOI:10.32604/cmc.2023.035743

    Abstract The prediction of processor performance has important reference significance for future processors. Both the accuracy and rationality of the prediction results are required. The hierarchical belief rule base (HBRB) can initially provide a solution to low prediction accuracy. However, the interpretability of the model and the traceability of the results still warrant further investigation. Therefore, a processor performance prediction method based on interpretable hierarchical belief rule base (HBRB-I) and global sensitivity analysis (GSA) is proposed. The method can yield more reliable prediction results. Evidence reasoning (ER) is firstly used to evaluate the historical data of the processor, followed by a… More >

Displaying 1-10 on page 1 of 29. Per Page