Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Cerium Oxide Nanoparticles Alleviate Enhanced UV-B Radiation-Induced Stress in Wheat Seedling Roots by Regulating Reactive Oxygen Species

    Cheng Sun1,3, Chen Zhao2,3, Guohua Wang2,3, Qianwen Mao2,3, Rong Han2,3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 455-479, 2025, DOI:10.32604/phyton.2025.061462 - 06 March 2025

    Abstract Enhanced UV-B radiation represents a major environmental factor impacting global cereal production. Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops. Recently, engineered nanoparticles, particularly cerium oxide nanoparticles (CeO2-NPs), have attracted widespread interest for their ability to boost plant tolerance to a range of abiotic stresses. This study investigates how CeO2-NPs application affects the morphology, physiology, biochemistry, and transcriptomics profiles of wheat seedling roots subjected to enhanced UV-B stress. The findings demonstrate that CeO2-NPs notably promoted root length, fresh and dry weights, and root activity (p < 0.05) under enhanced UV-B… More >

  • Open Access

    ARTICLE

    Transcriptomic Analysis of the Tolerance Response to Dehydration and Rehydration in Wheat Seedlings

    Ping Zhang1, Zhiyou Kong2, Junna Liu1, Yongjiang Liu1, Qianchao Wang1, Xiuju Huan1, Li Li1, Yunfeng Jiang3, Peng Qin1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.2, pp. 375-394, 2022, DOI:10.32604/phyton.2022.016358 - 26 September 2021

    Abstract Drought is the main abiotic stress that restricts wheat production. The rapid development of sequencing technology and its widespread application to various fields have revealed the structural characteristics and regulation of related genes through gene expression analysis. Here, we studied responses of wheat plants under drought and re-watering conditions, using morphological and physiological indicators. Moreover, a transcriptome analysis was conducted on Jingmai 12, a drought-resistant wheat strain, to explore the mechanism underlying the response of drought-resistant wheat seedlings to drought stress at the transcriptome level. Drought stress caused morphological and physiological changes in both drought-resistant… More >

Displaying 1-10 on page 1 of 2. Per Page