Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (296)
  • Open Access

    ARTICLE

    Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty

    Juan Li1, Tingting Xu1,*, Yi Gu2, Chuang Liu1, Guiping Zhou2, Guoliang Bian1

    Energy Engineering, Vol.121, No.10, pp. 2777-2795, 2024, DOI:10.32604/ee.2024.052331

    Abstract In fossil energy pollution is serious and the “double carbon” goal is being promoted, as a symbol of fresh energy in the electrical system, solar and wind power have an increasing installed capacity, only conventional units obviously can not solve the new energy as the main body of the scheduling problem. To enhance the system scheduling ability, based on the participation of thermal power units, incorporate the high energy-carrying load of electro-melting magnesium into the regulation object, and consider the effects on the wind unpredictability of the power. Firstly, the operating characteristics of high energy… More >

  • Open Access

    ARTICLE

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

    Zhan Wang1, Liang Li2,*, Long Wang1, Weidong Zhu3, Yinghui Li4, Echuan Yang5

    Energy Engineering, Vol.121, No.10, pp. 2981-3000, 2024, DOI:10.32604/ee.2024.048161

    Abstract A dynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of a wind turbine. The dynamic pitch motion will affect the linear vibration characteristics of the blade. However, these influences have not been studied in previous research. In this paper, the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied. The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration, where the rigid pitch motion introduces a parametrically excited vibration to the beam. Partial differential equations More > Graphic Abstract

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

  • Open Access

    ARTICLE

    The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power + Energy Storage Systems

    Caifeng Wen1,2, Boxin Zhang1,*, Yuanjun Dai3, Wenxin Wang4, Wanbing Xie1, Qian Du1

    Energy Engineering, Vol.121, No.10, pp. 2961-2979, 2024, DOI:10.32604/ee.2024.041677

    Abstract Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems. The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system, and to explore the correlation between system entropy generation and various indicators, so as to provide a theoretical basis for directly improving power quality by reducing loss. A steady-state experiment was performed by replacing the wind wheel with an electric motor,… More >

  • Open Access

    ARTICLE

    Reducing Condensation Inside the Photovoltaic (PV) Inverter according to the Effect of Diffusion as a Process of Vapor Transport

    Amal El Berry, Marwa M. Ibrahim*, A. A. Elfeky, Mohamed F. Nasr

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1189-1207, 2024, DOI:10.32604/fhmt.2024.050684

    Abstract A photovoltaic (PV) inverter is a vital component of a photovoltaic (PV) solar system. Photovoltaic (PV) inverter failure can mean a solar system that is no longer functioning. When electronic devices such as photovoltaic (PV) inverter devices are subjected to vapor condensation, a risk could occur. Given the amount of moisture in the air, saturation occurs when the temperature drops to the dew point, and condensation may form on surfaces. Numerical simulation with “COMSOL Software” is important for obtaining knowledge relevant to preventing condensation by using two steps. At first, the assumption was that the… More >

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines

    Xin Guan1,2,*, Mingyang Li1, Shiwei Wu1, Yuqi Xie1, Yongpeng Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2029-2043, 2024, DOI:10.32604/fdmp.2024.049499

    Abstract The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines. In particular, two icing processes (frost ice and clear ice) were examined by combining the FENSAP-ICE and FLUENT analysis tools. The ice type on the blade surfaces was predicted by using a multi-time step method. Accordingly, the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated. The results indicate that More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    Classification and Comprehension of Software Requirements Using Ensemble Learning

    Jalil Abbas1,*, Arshad Ahmad2, Syed Muqsit Shaheed3, Rubia Fatima4, Sajid Shah5, Mohammad Elaffendi5, Gauhar Ali5

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2839-2855, 2024, DOI:10.32604/cmc.2024.052218

    Abstract The software development process mostly depends on accurately identifying both essential and optional features. Initially, user needs are typically expressed in free-form language, requiring significant time and human resources to translate these into clear functional and non-functional requirements. To address this challenge, various machine learning (ML) methods have been explored to automate the understanding of these requirements, aiming to reduce time and human effort. However, existing techniques often struggle with complex instructions and large-scale projects. In our study, we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier (FNRC). By combining the… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs

    Nan Liu1,2, Chen Hong3,4,5, Xinchao Su3,4,5, Xing Jin1,2, Chen Jiang3,4,5,*, Yuqi Shi1,2, Bingkun Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1867-1882, 2024, DOI:10.32604/fdmp.2024.047427

    Abstract As the velocity of a train increases, the corresponding air pumping power consumption of the brake discs increases proportionally. In the present experimental study, a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel. In particular, three upstream velocities were selected on the basis of earlier investigations of trains operating at 160, 250, and 400 km/h, respectively. Moreover, 3D steady computational fluid dynamics (CFD) simulations of the flow field were conducted to compare with the wind tunnel test outcomes. The results for More >

  • Open Access

    CASE REPORT

    Case Report: Surgical Correction of Transposition of the Great Arteries with Aortopulmonary Window

    Qiqi Shi1,#, Xuan Lei2,#, Wenbo Zhang1,*, Ming Ye1,*

    Congenital Heart Disease, Vol.19, No.3, pp. 275-278, 2024, DOI:10.32604/chd.2024.051370

    Abstract Introduction: Transposition of the great arteries (TGA) with aortopulmonary window is a rare type of congenital heart disease with limited experience. We reported a neonate aged 25 days receiving the arterial switch operation and assisted with extracorporeal membrane oxygenation. Conclusion: TGA with aortopulmonary window can be safely correctly with the arterial switch operation. More >

Displaying 1-10 on page 1 of 296. Per Page