Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (265)
  • Open Access


    Research on Anti-Fluctuation Control of Winding Tension System Based on Feedforward Compensation

    Yujie Duan1, Jianguo Liang1,*, Jianglin Liu1, Haifeng Gao1, Yinhui Li2, Jinzhu Zhang1, Xinyu Wen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1239-1261, 2024, DOI:10.32604/cmes.2023.044400

    Abstract In the fiber winding process, strong disturbance, uncertainty, strong coupling, and fiber friction complicate the winding constant tension control. In order to effectively reduce the influence of these problems on the tension output, this paper proposed a tension fluctuation rejection strategy based on feedforward compensation. In addition to the bias harmonic curve of the unknown state, the tension fluctuation also contains the influence of bounded noise. A tension fluctuation observer (TFO) is designed to cancel the uncertain periodic signal, in which the frequency generator is used to estimate the critical parameter information. Then, the fluctuation signal is reconstructed by a… More >

  • Open Access


    Nonlinear Flap-Wise Vibration Characteristics of Wind Turbine Blades Based on Multi-Scale Analysis Method

    Qifa Lang, Yuqiao Zheng*, Tiancai Cui, Chenglong Shi, Heyu Zhang

    Energy Engineering, Vol.121, No.2, pp. 483-498, 2024, DOI:10.32604/ee.2023.042437

    Abstract This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle. We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory (NREL), to research the effects of the nonlinear flap-wise vibration characteristics. The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam, and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first. Then, the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force. Lastly, it is… More >

  • Open Access


    The Short-Term Prediction of Wind Power Based on the Convolutional Graph Attention Deep Neural Network

    Fan Xiao1, Xiong Ping1, Yeyang Li2,*, Yusen Xu2, Yiqun Kang1, Dan Liu1, Nianming Zhang1

    Energy Engineering, Vol.121, No.2, pp. 359-376, 2024, DOI:10.32604/ee.2023.040887

    Abstract The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale. Therefore, wind power forecasting plays a key role in improving the safety and economic benefits of the power grid. This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data. Based on the graph attention network and attention mechanism, the method extracts spatial-temporal characteristics from the data of multiple wind farms. Then, combined with a deep neural network, a convolutional graph… More >

  • Open Access


    A Temporary Frequency Response Strategy Using a Voltage Source-Based Permanent Magnet Synchronous Generator and Energy Storage Systems

    Baogang Chen1, Fenglin Miao2,*, Jing Yang1, Chen Qi2, Wenyan Ji1

    Energy Engineering, Vol.121, No.2, pp. 541-555, 2024, DOI:10.32604/ee.2023.028327

    Abstract Energy storage systems (ESS) and permanent magnet synchronous generators (PMSG) are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives. The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted. To improve the inertia response and frequency control capability, we propose a short-term frequency support strategy for the ESS and PMSG. To this end, the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion. The effectiveness of the proposed control strategy was… More >

  • Open Access


    Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations

    Zhoujie Zhu1, Gang Wang1, Qingquan Liu1, Guojun Wang2, Rui Dong2, Dayong Zhang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 625-639, 2024, DOI:10.32604/fdmp.2023.042128

    Abstract Important challenges must be addressed to make wind turbines sustainable renewable energy sources. A typical problem concerns the design of the foundation. If the pile diameter is larger than that of the jacket platform, traditional mechanical models cannot be used. In this study, relying on the seabed soil data of an offshore wind farm, the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters. An approach to determine the equivalent pile length is also proposed accordingly. The results provide evidence for the effectiveness and reliability of the model based… More >

  • Open Access


    Field Observation and Numerical Simulation of Extreme Met-Ocean Conditions: A Case Study of Typhoon Events in South China Sea

    Chen Gu1,*, Caiyu Wang1, Mengjiao Du2, Kan Yi2, Bihong Zhu1, Hao Wang2, Shu Dai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09776

    Abstract Site measurement is essential to the meteorological and oceanographic parameters of offshore wind farms. A floating lidar measurement buoy was deployed at a Qingzhou VI wind farm where is 45-80 km away from Guangdong coast. The field observation including wind and wave data start from March, 2021.The lidar wind data is compared and calibrated with the fixed wind tower data for three months, the accuracy meets the standard of stadge3 carbon trust. In this study, all these data are used to recalibrate for the met-ocean model to relies extreme conditions, such as Typhoon Kompasu(2118) and Typhoon Chaba(2203) in recent years.… More >

  • Open Access


    Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades

    Yuanjun Dai1,2,*, Xin Wei1, Baohua Li1, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 337-348, 2024, DOI:10.32604/fdmp.2023.042434

    Abstract To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades, unworn blades and trailing-edge worn blades have been assessed through relevant modal tests. According to these experiments, the natural frequencies of trailing-edge worn blades −1, −2, and −3 increase the most in the second to fourth order, the fifth order increases in the middle, and the first order increases the least. The damping ratio data indicate that, in general, the first five-order damping ratios of trailing-edge worn blades −1 and trailing-edge worn blades −2 are reduced, and the first five-order damping ratios of trailing-edge worn… More >

  • Open Access


    Short-Term Wind Power Prediction Based on ICEEMDAN-SE-LSTM Neural Network Model with Classifying Seasonal

    Shumin Sun1, Peng Yu1, Jiawei Xing1, Yan Cheng1, Song Yang1, Qian Ai2,*

    Energy Engineering, Vol.120, No.12, pp. 2761-2782, 2023, DOI:10.32604/ee.2023.042635

    Abstract Wind power prediction is very important for the economic dispatching of power systems containing wind power. In this work, a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and (long short-term memory) LSTM neural network is proposed and studied. First, the original data is prepossessed including removing outliers and filling in the gaps. Then, the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model. In addition, this study conducts seasonal classification of the annual data where… More >

  • Open Access


    Capacity Optimization Configuration of Hydrogen Production System for Offshore Surplus Wind Power

    Yanshan Lu1, Binbin He1, Jun Jiang1, Ruixiao Lin2,*, Xinzhen Zhang2, Zaimin Yang3, Zhi Rao3, Wenchuan Meng3, Siyang Sun3

    Energy Engineering, Vol.120, No.12, pp. 2803-2818, 2023, DOI:10.32604/ee.2023.042328

    Abstract To solve the problem of residual wind power in offshore wind farms, a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power. By studying the mathematical model of wind power output and calculating surplus wind power, as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank, an innovative capacity optimization allocation model was established. The objective of the model was to achieve the lowest total net present value over the entire life cycle. The model took into account… More >

  • Open Access


    Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines

    Yongxin Liu1, Puyu Zhao2, Jianxin Xu2, Xiaokai Meng1, Hong Yang1, Bo He2,*

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 521-539, 2023, DOI:10.32604/sdhm.2023.029850

    Abstract Numerical simulation of the spatial wind field plays a very important role in the study of wind-induced response law of transmission tower structures. A reasonable construction of a numerical simulation method of the wind field is conducive to the study of wind-induced response law under the action of an actual wind field. Currently, many research studies rely on simulating spatial wind fields as Gaussian wind, often overlooking the basic non-Gaussian characteristics. This paper aims to provide a comprehensive overview of the historical development and current state of spatial wind field simulations, along with a detailed introduction to standard simulation methods.… More > Graphic Abstract

    Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines

Displaying 11-20 on page 2 of 265. Per Page