Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Multi-Band Bandpass Filter Using Novel Topology for Next-Generation IoT Wireless Systems

    Muhammad Faisal*, Sohail Khalid

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4819-4832, 2022, DOI:10.32604/cmc.2022.029049

    Abstract The design of single- and quad-band Bandpass Filter (BPF) topology has been presented in this paper for next-generation Internet of Things (IoT) devices. The main topology is constructed using the Split Ring Resonator (SRR), separated by the Anti-Parallel Coupled Line Structure (APCLS). A detailed analysis of APCLS has been presented, which is further used to construct the single- and quad-band BPF. The single-band BPF design consists of SRR loaded with APCLS. The developed single-band BPF displays a dual-mode response with a center frequency of 2.65 GHz and a measured fractional bandwidth of 17.17%. Moreover, a quad-band bandpass filter has been… More >

  • Open Access

    ARTICLE

    5G Smart Mobility Management Based Fuzzy Logic Controller Unit

    Chafaa Hamrouni1,*, Slim Chaoui2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4941-4953, 2022, DOI:10.32604/cmc.2022.023732

    Abstract In the paper, we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network. Mobility management is considered as a main issue for all-IP mobile networks future generation. As a network-based mobility management protocol, Internet Engineering Task Force developed the Proxy Mobile IPv6 (PMIPv6) in order to support the mobility of IP devices, and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling, but it is not enough for the application needs in real-time. The present paper describes an approach based on the IEEE 802.21… More >

  • Open Access

    ARTICLE

    Radio Optical Network Simulation Tool (RONST)

    Yasmine I. Abdelhak1,2, Fady Kamel3, Moustafa Hafez2, Hussein E. Kotb4,5, Haitham A. Omran5, Tawfik Ismail6,7,*, Hassan Mostafa2,3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3685-3702, 2022, DOI:10.32604/cmc.2022.022470

    Abstract This paper presents a radio optical network simulation tool (RONST) for modeling optical-wireless systems. For a typical optical and electrical chain environment, performance should be optimized concurrently before system implementation. As a result, simulating such systems turns out to be a multidisciplinary problem. The governing equations are incompatible with co-simulation in the traditional environments of existing software (SW) packages. The ultra-wideband (UWB) technology is an ideal candidate for providing high-speed short-range access for wireless services. The limited wireless reach of this technology is a significant limitation. A feasible solution to the problem of extending UWB signals is to transmit these… More >

  • Open Access

    ARTICLE

    Improved Channel Reciprocity for Secure Communication in Next Generation Wireless Systems

    Imtisal Qadeer1,2, Muhammad Khurram Ehsan3,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2619-2630, 2021, DOI:10.32604/cmc.2021.015641

    Abstract To secure the wireless connection between devices with low computational power has been a challenging problem due to heterogeneity in operating devices, device to device communication in Internet of Things (IoTs) and 5G wireless systems. Physical layer key generation (PLKG) tackles this secrecy problem by introducing private keys among two connecting devices through wireless medium. In this paper, relative calibration is used as a method to enhance channel reciprocity which in turn increases the performance of the key generation process. Channel reciprocity based key generation is emerged as better PLKG methodology to obtain secure wireless connection in IoTs and 5G… More >

Displaying 1-10 on page 1 of 4. Per Page