Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (136)
  • Open Access

    ARTICLE

    Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin

    M.C. Lagel1, A. Pizzi1,2, S. Giovando3, A. Celzard4

    Journal of Renewable Materials, Vol.2, No.3, pp. 220-229, 2014, DOI:10.7569/JRM.2014.634113

    Abstract With the depletion of fossil resources, tannin extracts can be a natural alternative to some synthetic products. Hydrolysable chestnut tannin extracts have been used to partially replace phenol in PF resins for phenolic rigid foams. Phenol-formaldehyde-chestnut tannin (PFT) phenolic foams were initially made from copolymerized PFT resins of different molar ratio. The PFT foams so prepared were tested for thermal conductivity, these being slightly worse than that of pure PF foams; and for mechanical and water absorption, these two properties being better than those of pure PF foams. Indeed, PF resins represent an important part of synthetic resins. They are… More >

  • Open Access

    ARTICLE

    Characterization and Preparation of Wood-Furanic Foams

    V. K. Srivastava1, A. Pizzi2,3,*

    Journal of Renewable Materials, Vol.2, No.3, pp. 201-206, 2014, DOI:10.7569/JRM.2014.634107

    Abstract Fine wood powder/furanic foams were prepared with a strong predominance of the wood component. Low weight and density are important properties of foamed composites. Focusing on preparing light materials, wood foam composites were made using a chemical foaming method and expanded using diethyl ether as the foaming agent. The additives were added to note their effect on the density and mechanical properties, like impact strength and Young’s moduli, of the expanded composites. Various tests and scanning electron microscopy analysis were also performed. The foaming agent resulted in closed cells with varied sizes and more or less regular shapes, and with… More >

  • Open Access

    ARTICLE

    Formaldehyde-Free Wood Composites from Soybean Protein Adhesive

    Richard C. Ferguson, Sharathkumar K. Mendon, James W. Rawlins*, Shelby F. Thames

    Journal of Renewable Materials, Vol.2, No.3, pp. 166-172, 2014, DOI:10.7569/JRM.2013.634133

    Abstract Commercial particleboards are currently synthesized by blending wood furnish with formaldehyde-based resins and curing them under a combination of heat and pressure. Particleboards manufactured with urea-formaldehyde resin are known to liberate formaldehyde during their service lives. Formaldehyde’s carcinogenicity has prompted the search for environmentally-friendly resins for wood composite manufacture. Soybean protein-based adhesives have been developed as a renewable and formaldehyde-free replacement for urea-formaldehyde resins. Particleboards processed using the soybean protein adhesive matched or exceeded performance criteria of M-2-grade commercial particleboards when evaluated as per American National Standards Institute (ANSI) specifi cations. More >

  • Open Access

    ARTICLE

    Investigating the Viscoelastic Properties and Mechanical Performance of Wood Modifi ed by Biopolyester Treatments

    Marion Noël1,*, Warren Grigsby2, Thomas Volkmer1

    Journal of Renewable Materials, Vol.2, No.4, pp. 291-305, 2014, DOI:10.7569/JRM.2014.634118

    Abstract Oligomer systems based on poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) were impregnated in wood and polymerized in situ to improve the dimensional stability of the treated wood. Dynamic mechanical thermal analysis (DMTA) was used to characterize the impact on the treated wood properties. Cell wall bulking treatments (PLA and PGA oligomers: OLA and OGA) induced softening and plasticization of wood components. Lumen fi lling treatments (PBS and PBA oligomers: OBS and OBA) led to minor decreases in treated wood stiffness with any softening dependent on the polymer melt temperature. Overall, no oligomer treatment… More >

  • Open Access

    ARTICLE

    Foam-Laid Thermoplastic Composites Based on Kraft Lignin and Softwood Pulp

    Antti Ojala1,*, Lisa Wikström1, Kalle Nättinen2, Jani Lehmonen3, Karita Kinnunen-Raudaskoski4

    Journal of Renewable Materials, Vol.2, No.4, pp. 278-284, 2014, DOI:10.7569/JRM.2014.634126

    Abstract This article presents a new method of producing thermomoldable nonwoven materials based on kraft lignin (KL) and softwood kraft pulp (KP). A mixture of starch acetate (SA) and triethyl citrate (TEC) was used as a water insoluble plasticizer for KL. The thermoplastic lignin (TPL) material with the optimized ratio of KL, SA and TEC was prepared in a twin-screw extruder. The TPL compound was ground and mixed with KP fi bers to produce thermoformable sheets using foam-laid technology. The formed webs were compression molded (CM) into plates and mechanically tested. The foam-laid composites had tensile strengths and modulus of 67… More >

  • Open Access

    ARTICLE

    Evaluation of Mechanical Properties and Durability Performance of HDPE-Wood Composites

    M. Tazi1, F. Erchiqui1,*, F.Godard1, H. Kaddami2

    Journal of Renewable Materials, Vol.2, No.4, pp. 258-263, 2014, DOI:10.7569/JRM.2014.634120

    Abstract This article evaluates the mechanical properties and biodegradability of wood-plastic composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The mechanical properties and biodegradability of the biocomposites were successively characterized. The results indicate that adding sawdust particles to a polymer matrix improves the mechanical strength and stiffness of composites. The tensile strength of a composite with 3% coupling agent was improved by 13%, 34% and 54% respectively when 20%, 30% and 40% wood fi llers were added to… More >

  • Open Access

    ARTICLE

    Valorization of Tunisian Pomegranate Peel Tannins in Green Adhesives Formulation

    Houda Saad1,2,*, Antonio Pizzi3,4, Bertrand Charrier2, Naceur Ayed1, Karsten Rode5, Fatima Charrier - El Bouhtoury2

    Journal of Renewable Materials, Vol.3, No.1, pp. 34-43, 2015, DOI:10.7569/JRM.2014.634130

    Abstract The possible use of Tunisian pomegranate tannins in wood adhesive formulation was studied for the fi rst time. Colorimetric tests, Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-fl ight (MALDI-TOF) mass spectrometry were used to examine pomegranate tannins. Analysis showed that pomegranate peels are rich in hydrolyzable tannins. The Stiasny number tests showed the low reactivity of pomegranate tannin extract to formaldehyde and thus the diffi culty of using it in wood adhesive formulation. Thermomechanical analysis (TMA) and strength analysis of pomegranate tannin/hexamine-based resin showed weak bonding properties. More >

  • Open Access

    ARTICLE

    Using CO2 -Based Polymer Polypropylene Carbonate to Enhance the Interactions in Poly(lactic acid)/Wood Fiber Biocomposites

    Xiaoqing Zhang*, Simon Schmidtφ, Nick Rigopoulos, Januar Gotama, Eustathios Petinakis

    Journal of Renewable Materials, Vol.3, No.2, pp. 91-100, 2015, DOI:10.7569/JRM.2014.634135

    Abstract The behavior of a biodegradable CO2 -based polymer polypropylene carbonate (PPC) as polymer matrix of wood fi ber (WF) composites was examined and compared with that of using poly(lactic acid) (PLA) as the matrix. The PPC/WF composites displayed poor mechanical properties as compared to PLA/WF composites because PPC is an amorphous polymer with low Tg and poor thermal stability. However, when PPC was used in conjunction with PLA in WF composites, the mechanical strength and modulus of the composites could match or even exceed the level of PLA/WF composites. The strong intermolecular interactions between PPC and WF and those between… More >

  • Open Access

    ARTICLE

    Design and Evaluation of Thin-Walled Hollow-Core WoodStrand Sandwich Panels

    Christopher Voth1, Nathan White2, Vikram Yadama3,*, William Cofer3

    Journal of Renewable Materials, Vol.3, No.3, pp. 234-243, 2015, DOI:10.7569/JRM.2015.634109

    Abstract Part of a long-term goal of developing a sustainable composite panel that meets both structural and energy performance requirements in building construction applications, this study discusses the development of a thinwalled wood-strand 3D core element that shows promise for a variety of panelized construction applications, such as in a building envelope. Sandwich panels take advantage of the lightweight corrugated core sandwiched between stress skin faces acting similar to an I-beam. Specific bending stiffness of sandwich panels fabricated with ponderosa pine strands was significantly higher than average values of commercially produced composite panels of equivalent thickness (141–156% and 120–133% stiffer than… More >

  • Open Access

    ARTICLE

    Application of Fiber Undulation Model to Predict Oriented Strand Composite Elastic Properties

    Vikram Yadama*, Michael P. Wolcott

    Journal of Renewable Materials, Vol.3, No.3, pp. 216-223, 2015, DOI:10.7569/JRM.2015.634103

    Abstract The effects of strand undulation angles in wood-strand composites have often been ignored due to the virtual impossibility of experimental determination of their effects on composite material properties, and the diffi culty in modeling localized deviations in angle along the path of a strand. The fi ber undulation model (FUM), that has been previously verifi ed, was applied in this study to predict the elastic constants of laboratory-manufactured oriented strand panels. A stochastic approach was incorporated where a series rule of mixtures with probability density functions of angle distributions was utilized in the model to transform the elastic constants in… More >

Displaying 31-40 on page 4 of 136. Per Page