Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

    Panpan Cao1,2, Xiulin Huang1,3,*, Shenxu Bao4, Jin Yang5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2041-2051, 2023, DOI:10.32604/fdmp.2023.027399

    Abstract Using ethylene glycol monovinyl polyoxyethylene ether, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and acrylic acid as the main synthetic monomers, a high robustness polycarboxylate superplasticizer was prepared. The effects of initial temperature, ratio of acid to ether, amount of chain transfer agent, and synthesis process on the properties of the superplasticizer were studied. The molecular structure was characterized by GPC (Gel Permeation Chromatography) and IR (Infrared Spectrometer). As shown by the results, when the initial reaction temperature is 15°C, the ratio of acid to ether is 3.4:1 and the acrylic acid pre-neutralization is 15%, The AMPS substitution is 10%, the amount of… More > Graphic Abstract

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

  • Open Access

    REVIEW

    Effect of Recycled Aggregate and Slag as Substitutes for Natural Aggregate and Cement on the Properties of Concrete: A Review

    Peng Zhang1,2, Wenshuai Wang1, Yuanxun Zheng1,*, Shaowei Hu2,3

    Journal of Renewable Materials, Vol.11, No.4, pp. 1853-1879, 2023, DOI:10.32604/jrm.2023.024981

    Abstract Using recycled aggregate (RA) and slag instead of natural aggregate (NA) and cement can reduce greenhouse gas emissions (GHGE) and achieve effective waste recovery. In recent years, RA has been widely used to replace NA in concrete. Every year, several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete (RAC). Due to the loose and porous material properties of RA, the mechanical properties and durability of RAC, such as strength, carbonation resistance, permeability resistance and chloride ion penetration resistance, are greatly reduced compared with natural aggregate concrete. In contrast, concrete containing slag instead of NA and… More >

  • Open Access

    REVIEW

    Workability and Durability of Concrete Incorporating Waste Tire Rubber: A Review

    Peng Zhang, Xixi Wang, Juan Wang*, Tianhang Zhang

    Journal of Renewable Materials, Vol.11, No.2, pp. 745-776, 2023, DOI:10.32604/jrm.2022.022846

    Abstract Environmental problems caused by waste tires are becoming increasingly prominent. There is an urgent need to find a green way to dispose of waste tires, and scholars have made considerable efforts in this regard. In the construction industry, rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent. As a new building material, rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields. Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete. It has been… More >

  • Open Access

    ARTICLE

    Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand

    Suiwei Pan1, Anqi Ren1, Yongli Peng1, Min Wu2, Wanguo Dong3, Chunlin Liu2, Depeng Chen2,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 881-904, 2023, DOI:10.32604/jrm.2022.023000

    Abstract This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand (CSLSCC) to prevent the pollution of steel slag in the environment. The SF, J-ring, visual stability index, and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates. The experiment results indicate that CSLSCC with the 20% volume percentage of steel slag (VPS) performs better workability, higher strength, and higher specific strength. The 7-day compressive strength of CSLSCC with the… More > Graphic Abstract

    Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand

  • Open Access

    ARTICLE

    An Experimental Investigation on Workability and Bleeding Behaviors of Cement Pastes Doped with Nano Titanium Oxide (n-TiO2) Nanoparticles and Fly Ash

    Fatih Çelik1,*, Oğuzhan Yıldız2, Andaç Batur Çolak3, Samet Mufit Bozkır1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 135-158, 2023, DOI:10.32604/fdmp.2022.021014

    Abstract In this study, the workability of cement-based grouts containing n-TiO2 nanoparticles and fly ash has been investigated experimentally. Several characteristic quantities (including, but not limited to, the marsh cone flow time, the mini slump spreading diameter and the plate cohesion meter value) have been measured for different percentages of these additives. The use of fly ash as a mineral additive has been found to result in improvements in terms of workability behavior as expected. Moreover, if nano titanium oxide is also used, an improvement can be obtained regarding the bleeding values for the cement-based grout mixes. Using such experimental data,… More >

  • Open Access

    ARTICLE

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

    Zaibo Zhou1, Juanhong Liu1,2,3,*, Kun Luo1, Aixiang Wu1,3, Hongjiang Wang1,3

    Journal of Renewable Materials, Vol.10, No.2, pp. 373-384, 2022, DOI:10.32604/jrm.2022.016380

    Abstract In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG) on the environment and improve the workability of HPG, the effects of the content of quicklime and types of biopolymer (hydroxypropyl methylcellulose, xanthan gum, sodium polyacrylate(PAANa)) on the compressive strength, softening coefficient and ultrasonic velocity of HPG were evaluated. When the content of quicklime was 1.5% and the content of PAANa was 0.2%, HPG had the best mechanical properties and workability, its water retention rate can be increased by 5.8%, and unconfined compressive strength of 3 days increased by 10.3% and 7 days increased by 13.1%. Through the analysis… More > Graphic Abstract

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

Displaying 1-10 on page 1 of 6. Per Page