Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Hierarchical Rigid Registration of Femur Surface Model Based on Anatomical Features

    Xiaozhong Chen*

    Molecular & Cellular Biomechanics, Vol., , DOI:10.32604/mcb.2020.08933

    Abstract Existing model registration of individual bones does not have a high certainly of success due to the lack of anatomic semantic. In light of the surface anatomy and functional structure of bones, we hypothesized individual femur models would be aligned through feature points both in geometrical level and in anatomic level, and proposed a hierarchical approach for the rigid registration (HRR) of point cloud models of femur with high resolution. Firstly, a coarse registration between two simplified point cloud models was implemented based on the extraction of geometric feature points (GFPs); and then, according to the anatomic feature points (AFPs)… More >

  • Open Access

    ARTICLE

    New Concept to Non-Invasively Screen Iron Deficiency in Patients

    Ali E. Dabiri1,2,*, Erik Samwel3, Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol., , DOI:10.32604/mcb.2020.08775

    Abstract Nearly two billion people are afflicted with iron deficiency and approximately 300 million children globally have anemia. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency requires a blood test. It is becoming increasingly important to screen these individuals to reduce medical cost and avoid chronic disease conditions. There are limited settings of laboratory infrastructure for standard blood-based tests around the world to routinely accomplish this important screening test. We propose a new concept to use either human hair or nail as a screening method to detect steady state iron content… More >

  • Open Access

    ARTICLE

    A Patient-Specific Computational Fluid Dynamic Model of Middle Cerebral Artery Aneurysm Before and One Year After Surgery

    Shicheng He1, Juhui Qiu1, Wanling Liu1, Tieying Yin1, Dechuan Zhang2,*, Donghua Liao3,4, Haijun Zhang5, Yuxia Yin5, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol., , DOI:10.32604/mcb.2020.08750

    Abstract Computational fluid dynamics (CFD) has been widely used for studying intracranial aneurysm hemodynamics, while its use for guiding clinical strategy is still in development. In this study, CFD simulations helped inform treatment decision for a middle cerebral artery (MCA) aneurysm case was investigated. A patient with a 10.4 × 9.8 mm aneurysm attached with a small aneurysm at the edge of the trifurcation in the left MCA was included in this study. For removing the MCA aneurysm, two scenarios were considered: Plan-A involved clipping the small aneurysm and Plan-B involved clipping the whole aneurysm. A suitable treatment plan was decided… More >

  • Open Access

    ARTICLE

    A C-GAN Denoising Algorithm in Projection Domain for Micro-CT

    Lujie Chen1, Liang Zheng1, Maosen Lian1, Shouhua Luo1,*

    Molecular & Cellular Biomechanics, Vol., , DOI: 10.32604/mcb.2019.07386

    Abstract Micro-CT provides a high-resolution 3D imaging of micro-architecture in a non-invasive way, which becomes a significant tool in biomedical research and preclinical applications. Due to the limited power of micro-focus X-ray tube, photon starving occurs and noise is inevitable for the projection images, resulting in the degradation of spatial resolution, contrast and image details. In this paper, we propose a C-GAN (Conditional Generative Adversarial Nets) denoising algorithm in projection domain for Micro-CT imaging. The noise statistic property is utilized directly and a novel variance loss is developed to suppress the blurry effects during denoising procedure. Conditional Generative Adversarial Networks (C-GAN)… More >

  • Open Access

    REVIEW

    New Applications for Cryotherapy

    Rafi Mazor1,*, Meital Mazor2, Ali E. Dabiri2,3, Bhavesh Patel2, Ghassan S. Kassab2

    Molecular & Cellular Biomechanics, Vol., , DOI: 10.32604/mcb.2019.08267

    Abstract Cryotherapy, or more commonly known as cold therapy, is the use of low temperatures in medical treatment. The most prominent use of cryotherapy is for cryosurgery where application of very low temperatures is used to ablate diseased tissue (e.g., most commonly in dermatology). Recent research, however, shows that low temperature may modulate collagen fibers beyond the already known effects of extreme cooling on joint pain relieve and inflammation. The goal of this brief review is to outline the known effects of extreme cooling on molecular, fiber and cell physiology and to leverage these properties in various potential medical applications. Specially,… More >

Displaying 11-20 on page 2 of 15. Per Page