Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access


    Optimized General Uniform Quantum State Preparation

    Mark Ariel Levin*

    Journal of Quantum Computing, Vol.6, pp. 15-24, 2024, DOI:10.32604/jqc.2024.047423

    Abstract Quantum algorithms for unstructured search problems rely on the preparation of a uniform superposition, traditionally achieved through Hadamard gates. However, this incidentally creates an auxiliary search space consisting of nonsensical answers that do not belong in the search space and reduce the efficiency of the algorithm due to the need to neglect, un-compute, or destructively interfere with them. Previous approaches to removing this auxiliary search space yielded large circuit depth and required the use of ancillary qubits. We have developed an optimized general solver for a circuit that prepares a uniform superposition of any N states while minimizing depth and… More >

  • Open Access


    3-Qubit Circular Quantum Convolution Computation Using the Fourier Transform with Illustrative Examples

    Artyom M. Grigoryan1,*, Sos S. Agaian2

    Journal of Quantum Computing, Vol.6, pp. 1-14, 2024, DOI:10.32604/jqc.2023.026981

    Abstract In this work, we describe a method of calculation of the 1-D circular quantum convolution of signals represented by 3-qubit superpositions in the computational basis states. The examples of the ideal low pass and high pass filters are described and quantum schemes for the 3-qubit circular convolution are presented. In the proposed method, the 3-qubit Fourier transform is used and one addition qubit, to prepare the quantum superposition for the inverse quantum Fourier transform. It is considered that the discrete Fourier transform of one of the signals is known and calculated in advance and only the quantum Fourier transform of… More >

  • Open Access


    A Protocol for Conversion of Path-Spin to Spin-Spin Quantum Entanglement

    Indranil Bayal1, Pradipta Panchadhyayee1,2,*

    Journal of Quantum Computing, Vol.5, pp. 71-79, 2023, DOI:10.32604/jqc.2023.045164

    Abstract The present model deals with a protocol which involves the generation and conversion of entanglement from path-spin (P-S) hybrid entanglement associated with half-spin particle to spin-spin (S-S) interparticle entanglement. This protocol finds its applications in quantum information processing via a series of operations which include a beam splitter, spin flipper, spin measurement, classical channel, unitary transformations. Finally, it leads to two particles having completely entangled spin variables, without any requirement of any simultaneous operation on the two particles. More >

  • Open Access


    Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle Problem

    Giuseppe Corrente1,2,*, Carlo Vincenzo Stanzione3,4, Vittoria Stanzione5

    Journal of Quantum Computing, Vol.5, pp. 55-70, 2023, DOI:10.32604/jqc.2023.044786

    Abstract The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several constraints to the graphs,… More >

  • Open Access


    Design and Implementation of Quantum Repeaters: Insights on Quantum Entanglement Purification

    Karoki A. Mũgambi*, Geoffrey O. Okeng’o

    Journal of Quantum Computing, Vol.5, pp. 25-40, 2023, DOI:10.32604/jqc.2023.045654

    Abstract Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm. It relies on quantum entanglement to facilitate the transmission of quantum states between parties. Quantum repeaters are crucial for facilitating long-distance quantum communication. These quantum devices act as intermediaries between adjacent communication channel segments within a fragmented quantum network, allowing for entanglement swapping between the channel segments. This entanglement swapping process establishes entanglement links between the endpoints of adjacent segments, gradually creating a continuous entanglement connection over the entire length of the transmission channel. The established quantum link can… More >

  • Open Access


    Effects of T-Factor on Quantum Annealing Algorithms for Integer Factoring Problem

    Zhiqi Liu1, Shihui Zheng1, Xingyu Yan1, Ping Pan1,2, Licheng Wang1,3,*

    Journal of Quantum Computing, Vol.5, pp. 41-54, 2023, DOI:10.32604/jqc.2023.045572

    Abstract The hardness of the integer factoring problem (IFP) plays a core role in the security of RSA-like cryptosystems that are widely used today. Besides Shor’s quantum algorithm that can solve IFP within polynomial time, quantum annealing algorithms (QAA) also manifest certain advantages in factoring integers. In experimental aspects, the reported integers that were successfully factored by using the D-wave QAA platform are much larger than those being factored by using Shor-like quantum algorithms. In this paper, we report some interesting observations about the effects of QAA for solving IFP. More specifically, we introduce a metric, called T-factor that measures the… More >

  • Open Access


    On Factorization of N-Qubit Pure States and Complete Entanglement Analysis of 3-Qubit Pure States Containing Exactly Two Terms and Three Terms

    Dhananjay P. Mehendale1,*, Madhav R. Modak2

    Journal of Quantum Computing, Vol.5, pp. 15-24, 2023, DOI:10.32604/jqc.2023.043370

    Abstract A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states. Factorizing a general multi-qubit pure quantum state into the tensor product of its factors (pure states containing a smaller number of qubits) can be a challenging task, especially for highly entangled states. A new criterion based on the proportionality of the rows of certain associated matrices for the existence of certain factorization and a factorization algorithm that follows from this criterion for systematically extracting all the factors is developed in this paper. 3-qubit pure states play a crucial… More >

  • Open Access


    Pancreatic Cancer Data Classification with Quantum Machine Learning

    Amit Saxena1, Smita Saxena2,*

    Journal of Quantum Computing, Vol.5, pp. 1-13, 2023, DOI:10.32604/jqc.2023.044555

    Abstract Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles. The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems, which are pervasive in machine learning. Quantum Support Vector Machine (QSVM) is a quantum machine learning algorithm inspired by classical Support Vector Machine (SVM) that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces. We provide a comprehensive overview of the underlying principles of QSVM, elucidating how different quantum feature maps and quantum… More >

  • Open Access


    Reversible Data Hiding with Contrast Enhancement Using Bi-histogram Shifting and Image Adjustment for Color Images

    Goma Tshivetta Christian Fersein Jorvialom1,2, Lord Amoah1,2,*

    Journal of Quantum Computing, Vol.4, No.3, pp. 183-197, 2022, DOI:10.32604/jqc.2022.039913

    Abstract Prior versions of reversible data hiding with contrast enhancement (RDHCE) algorithms strongly focused on enhancing the contrast of grayscale images. However, RDHCE has recently witnessed a rise in contrast enhancement algorithms concentrating on color images. This paper implies a method for color images that uses the RGB (red, green, and blue) color model and is based on bi-histogram shifting and image adjustment. Bi-histogram shifting is used to embed data and image adjustment to achieve contrast enhancement by adjusting the images resulting from each channel of the color images before combining them to generate the final enhanced image. Images are first… More >

  • Open Access


    Research on Improving Teaching Quality and Optimizing Teaching Scheme Based on Deep Learning in Chinese Literature Scene

    Yali Wang*

    Journal of Quantum Computing, Vol.4, No.3, pp. 165-181, 2022, DOI:10.32604/jqc.2022.039795

    Abstract With the rapid development of society nowadays, this paper begins to study the teaching strategies of promoting students’ deep learning in the Chinese literature scene, and the attitudes and teaching quality of students and teachers when learning Chinese literature. The investigation and analysis show that: (1) For example, the relationship between literary scenes and characters in the famous literary work “Three Kingdoms” is analyzed. The complex character relationships in literature are important to literary scenes and learning. (2) It explains that the suggestions when writing Chinese literary scenes need to be pragmatic, pay attention to modern people’s livelihood, and the… More >

Displaying 1-10 on page 1 of 66. Per Page