Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,114)
  • Open Access


    Chitosan Nanoparticles as Biostimulant in Lettuce (Lactuca sativa L.) Plants

    Silvia C. Ramírez-Rodríguez1, Pablo Preciado-Rangel1, Marcelino Cabrera-De La Fuente2, Susana González-Morales2, Hortensia Ortega-Ortiz3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 777-787, 2024, DOI:10.32604/phyton.2024.048096

    Abstract Biodegradable nanoparticles such as chitosan nanoparticles (CSNPs) are used in sustainable agriculture since they avoid damage to the environment; CSNPs have positive effects such as the accumulation of bioactive compounds and increased productivity in plants. This study aimed to investigate the impact of applying CSNPs on lettuce, specifically focusing on enzymatic activity, bioactive compounds, and yield. The trial was conducted using a completely randomized design, incorporating CSNPs: 0, 0.05, 0.1, 0.2, 0.4, and 0.8 mg mL. The doses of 0.4 mg mL improve yields up to 24.6% increases and 0.1 mg mL of CSNPs increases total phenols by 31.2% and… More >

  • Open Access


    Transcriptome Analysis of Inflorescence Development at the Five-Leaf Stage in Castor (Ricinus communis L.)

    Yong Zhao1,#, Yaxuan Jiang3,#, Li Wen1, Rui Luo2, Guorui Li2, Jianjun Di2, Mingda Yin2, Zhiyan Wang2, Fenglan Huang2,4,5,6,7,*, Fanjuan Meng3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 713-723, 2024, DOI:10.32604/phyton.2024.047657

    Abstract The yield of castor is influenced by the type of inflorescence and the proportion of female flowers. However, there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences. In this study, we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage. In comparison to the MI (complete pistil without willow leaves), 290 and 89 differentially expressed genes (DEGs) were found in the SFI (complete pistil with willow leaves) and the BI (monoecious inflorescence), respectively. Among the DEGs, 104 and 88 were upregulated in the SFI and BI, respectively, compared… More >

  • Open Access


    Unexpected Diversity in Ecosystem Nutrient Responses to Experimental Drought in Temperate Grasslands

    Biying Qiu1,2, Niwu Te2, Lin Song2, Yuan Shi2, Chuan Qiu2, Xiaoan Zuo3, Qiang Yu4, Jianqiang Qian5, Zhengwen Wang2, Honghui Wu6,7, Wentao Luo2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 831-841, 2024, DOI:10.32604/phyton.2024.047560

    Abstract The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of global change studies. However, previous studies were more often based on site-specific experiments, introducing a significant uncertainty to synthesis and site comparisons. We investigated the responses of vegetation and soil nutrients to drought using a network experiment of temperate grasslands in Northern China. Drought treatment (66% reduction in growing season precipitation) was imposed by erecting rainout shelters, respectively, at the driest, intermediate, and wettest sites. We found that vegetation nutrient concentrations increased but soil nutrient concentrations decreased along the aridity gradient. Differential responses were… More >

  • Open Access


    Landscape of Sequence Variations in Homologous Copies of FAD2 and FAD3 in Rapeseed (Brassica napus L.) Germplasm with High/Low Linolenic Acid Trait

    Haoxue Wu#, Xiaohan Zhang§,#, Xiaoyu Chen, Kang Li, Aixia Xu, Zhen Huang, Jungang Dong, Chengyu Yu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 627-640, 2024, DOI:10.32604/phyton.2024.050321

    Abstract Genetic manipulation (either restraint or enhancement) of the biosynthesis pathway of α-linolenic acid (ALA) in seed oil is an important goal in Brassica napus breeding. B. napus is a tetraploid plant whose genome often harbors four and six homologous copies, respectively, of the two fatty acid desaturases FAD2 and FAD3, which control the last two steps of ALA biosynthesis during seed oil accumulation. In this study, we compared their promoters, coding sequences, and expression levels in three high-ALA inbred lines 2006L, R8Q10, and YH25005, a low-ALA line A28, a low-ALA/high-oleic-acid accession SW, and the wildtype ZS11. The expression levels of… More >

  • Open Access


    Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress

    Honghui Sun1,2,#, Ruichao Liu1,2,#, Yueting Qi1, Hongsheng Gao1, Xueting Wang1, Ning Jiang1,2, Xiaotong Guo1,2, Hongxia Zhang1, Chunyan Yu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 533-549, 2024, DOI:10.32604/phyton.2024.049417

    Abstract Grapes, one of the oldest tree species globally, are rich in vitamins. However, environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality. The glutamate receptor (GLR) family, comprising highly conserved ligand-gated ion channels, regulates plant growth and development in response to stress. In this study, 11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis. Bioinformatic methods were employed to analyze the basic physical and chemical properties, phylogenetic trees, conserved domains, motifs, expression patterns, and evolutionary relationships. Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three… More >

  • Open Access


    SPATULA as a Versatile Tool in Plant: The Progress and Perspectives of SPATULA (SPT) Transcriptional Factor

    Lei Liang, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 517-531, 2024, DOI:10.32604/phyton.2024.049277

    Abstract With the rapid development of modern molecular biology and bioinformatics, many studies have proved that transcription factors play an important role in regulating the growth and development of plants. SPATULA (SPT) belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development. This review systemically summarizes the multiple roles of SPT in plant growth, development, and stress response, including seed germination, flowering, leaf size, carpel development, and root elongation, which is helpful for us to better understand the functions of SPT. More >

  • Open Access


    The Identification of Phenylalanine Ammonia-Lyase (PAL) Genes from Pinus yunnanensis and an Analysis of Enzyme Activity in vitro

    Dejin Mu1,2, Lin Chen1,2, Heze Wang1,2, Zhaoliu Hu1,2, Sihui Chen1,2, Shi Chen1,2, Nianhui Cai1,2, Yulan Xu1,2, Junrong Tang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 503-516, 2024, DOI:10.32604/phyton.2024.048786

    Abstract Phenylalanine ammonia lyase (PAL) is the rate-limiting and pivotal enzyme of the general phenylpropanoid pathway, but few reports have been found on PAL genes in Pinus yunnanensis. In the present study, three PAL genes were cloned and identified from P. yunnanensis seedlings for the first time, namely, PyPAL-1, PyPAL-2, and PyPAL-3. Our results indicated that the open-reading frames of PyPAL genes were 2184, 2157, and 2385 bp. Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants. In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of… More >

  • Open Access


    Selenium Differentially Regulates Flavonoid Accumulation and Antioxidant Capacities in Sprouts of Twenty Diverse Mungbean ( (L.) Wilczek) Genotypes

    Fenglan Zhao1, Jizhi Jin1, Meng Yang1, Franklin Eduardo Melo Santiago2, Jianping Xue1, Li Xu3,*, Yongbo Duan1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 611-625, 2024, DOI:10.32604/phyton.2024.048295


    Seed germination with selenium (Se) is promising for producing Se-biofortified foods. Mungbean (Vigna radiata (L.) Wilczek) sprout is freshly eaten as a salad dressed with sauce, making it superior for Se biofortification. Since the Se safety range for the human body is extremely narrow, it is imperative to evaluate the genotypic responses of mungbean sprouts to Se. This study evaluated the Se enrichment capacity and interaction with flavonoids and antioxidant systems in sprouts of 20 mungbean germplasms. Selenium treatment was done by immersing mungbean seeds in 20 μM sodium selenite solution for 8 h. Afterward, the biomass, Se amounts, flavonoid… More >

  • Open Access


    SiRAP2-12, a Positive Regulatory Factor, Effectively Improves the Waterlogging Tolerance of Foxtail Millet (Setaria italica)

    Xueyan Xia1,#, Xiaohong Fu2,#, Yu Zhao1, Jihan Cui1, Nuoya Xiao1, Jingxin Wang1, Yiwei Lu1, Meihong Huang1, Cheng Chu1, Jia Zhang2, Mengxin Yang2, Shunguo Li1,*, Jianfeng Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 445-465, 2024, DOI:10.32604/phyton.2024.048273

    Abstract Foxtail millet (Setaria italica) growth was inhibited because of waterlogging stress, which has caused yield reduction. ERF family plays an important role to plant adversity tolerance. In our study, we obtained 19,819 differential expressed genes (DEGs) between the two treatments based on the RNA-seq sequencing of foxtail millet of waterlogging stress. Furthermore, a total of 28 ERF family members were obtained, which have a complete open reading frame. We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance. It was found that SiERF1A/B/C (GenBank ID: OR775217, OR775219, OR775218) and SiRAP2-12 (GenBank ID: OR775216) have… More >

  • Open Access


    Correlation and Pathway Analysis of the Carbon, Nitrogen, and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea (Camellia sinensis)

    Chun Mao1, Ji He1,*, Xuefeng Wen1, Yangzhou Xiang2, Jihong Feng1, Yingge Shu1

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 487-502, 2024, DOI:10.32604/phyton.2024.048246

    Abstract The contents of carbon (C), nitrogen (N), and phosphorus (P) in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea, such as tea polyphenols, amino acids, and caffeine. However, few studies have quantified the effects of these factors on the main quality components of tea. The study aimed to explore the interactions of C, N, and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method. The results indicated that (1) The contents of C, N, and P in soil, microorganisms, and tea plants… More >

Displaying 11-20 on page 2 of 1114. Per Page