Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,350)
  • Open Access

    ARTICLE

    Numerical Analysis of Parameters in a Laminated Beam Model by Radial Basis Functions

    Y. C. Hon1, L. Ling2, K. M. Liew3

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 39-50, 2005, DOI:10.3970/cmc.2005.002.039

    Abstract In this paper we investigate a thermal driven Micro-Electrical-Mechanical system which was originally designed for inkjet printer to precisely deliver small ink droplets onto paper. In the model, a tiny free-ended beam of metal bends and projects ink onto paper. The model is solved by using the recently developed radial basis functions method. We establish the accuracy of the proposed approach by comparing the numerical results with reported experimental data. Numerical simulations indicate that a light (low composite mass) beam is more stable as it does not oscillate much. A soft (low rigidity) beam results in a higher rate of… More >

  • Open Access

    ARTICLE

    A four-node hybrid assumed-strain finite element for laminated composite plates

    A. Cazzani1, E. Garusi2, A. Tralli3, S.N. Atluri4

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 23-38, 2005, DOI:10.3970/cmc.2005.002.023

    Abstract Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. \newline In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned along a straight line… More >

  • Open Access

    ARTICLE

    Simulation Studies of A 76MM Hydrocyclone

    K.Udaya Bhaskar1,2, Sumit Tiwari2, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 13-22, 2005, DOI:10.3970/cmc.2005.002.013

    Abstract The investigation pertains to establishing a simulation methodology for understanding the separation characteristics of a typical hydrocyclone where the work was carried out using a commercially available CFD software. The studies included water flow profiles, water throughput {\&} product split, particle distribution etc. and the simulated results are further validated with suitably performed experiments. The work essentially highlights the performance of the hydrocyclone using numerical studies where water is used as a primary phase and solid particles as secondary ones. This methodology is expected to be useful in the design of hydrocyclones and optimizing the processes. More >

  • Open Access

    ARTICLE

    Benchmark Solutions for Three-Dimensional Transient Heat Transfer in Two-Dimensional Environments Via the Time Fourier Transform

    Julieta António1,2, António Tadeu2, Luís Godinho2, Nuno Simões2

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 1-12, 2005, DOI:10.3970/cmc.2005.002.001

    Abstract The evaluation of heat propagation in the time domain generated by transient heat sources placed in the presence of three-dimensional media requires the use of computationally demanding numerical schemes. The implementation of numerical 3D solutions may benefit from the existence of benchmark solutions to test the accuracy of approximate schemes.
    With this purpose inmind, this article presents analyticalnumerical solutions to evaluate the heat-field elicited by monopole heat sources in the presence of three different inclusions, namely, a cylindrical circular solid inclusion, a cylindrical circular cavity with null fluxes and a cavity with null temperatures prescribed along its boundary, buried in… More >

  • Open Access

    ARTICLE

    Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

    B. Wang1, H.Q. Zhang1, C.K. Chan2, X.L. Wang1

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 275-288, 2004, DOI:10.3970/cmc.2004.001.275

    Abstract Dilute gas-particle turbulent flow over a backward-facing step is numerically simulated. Large Eddy Simulation (LES) is used for the continuous phase and a Lagrangian trajectory method is adopted for the particle phase. Four typical locations in the flow field are chosen to investigate the two-phase velocity fluctuations. Time-series velocities of the gas phase with particles of different sizes are obtained. Velocity of the small particles is found to be similar to that of the gas phase, while high frequency noise exists in the velocity of the large particles. While the mean and rms velocities of the gas phase and small… More >

  • Open Access

    ARTICLE

    Simulation of Thin Film Delamination Under Thermal Loading

    L. Chernin1, K.Y. Volokh1,2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 259-274, 2004, DOI:10.3970/cmc.2004.001.259

    Abstract The conventional approach to analysis of thin film delamination is based on the consideration of the film, which is subjected to residual stresses arising from the thermal mismatch between the film and the substrate, within the framework of the classical fracture mechanics and the structural buckling theories. Such concepts as the energy release rate and the stress intensity factors are crucial in this case.

    A different approach to analysis of thin film delamination considers the effect of the compliant interface between the film and the substrate. This compliant interface is described by the traction-separation constitutive law.

    More >

  • Open Access

    ARTICLE

    A Matrix Decomposition MFS Algorithm for Biharmonic Problems in Annular Domains

    T. Tsangaris1, Y.–S. Smyrlis1, 2, A. Karageorghis1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 245-258, 2004, DOI:10.3970/cmc.2004.001.245

    Abstract The Method of Fundamental Solutions (MFS) is a boundary-type method for the solution of certain elliptic boundary value problems. In this work, we develop an efficient matrix decomposition MFS algorithm for the solution of biharmonic problems in annular domains. The circulant structure of the matrices involved in the MFS discretization is exploited by using Fast Fourier Transforms. The algorithm is tested numerically on several examples. More >

  • Open Access

    ARTICLE

    An r-h Adaptive Strategy Based On Material Forces and Error Assessment

    R. Gangadharan1, A. Rajagopal1, S.M. Sivakumar1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 229-244, 2004, DOI:10.3970/cmc.2004.001.229

    Abstract A new r-h adaptive scheme is proposed and formulated. It involves a combination of the configurational force based r-adaption with weighted Laplacian smoothing and mesh enrichment by h-refinement. A Zienkiewicz-Zhu best guess stress error estimator is used in the h-refinement strategy. The best sequence for combining the effectiveness of r- and h- adaption has been evolved at in this study. A further reduction in the potential energy and the relative error norm of the system is found to be achieved with combined r-adaption and mesh enrichment (in the form h-refinement). Numerical study confirms that the proposed combined r-h adaption is… More >

  • Open Access

    ARTICLE

    Role of Coupling Terms in Constitutive Relationships of Magnetostrictive Materials

    D. P. Ghosh1, S. Gopalakrishnan2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 213-228, 2004, DOI:10.3970/cmc.2004.001.213

    Abstract Anhysteretic, coupled, linear and nonlinear constitutive relationship for magnetostrictive material is studied in this paper. Constitutive relationships of magnetostrictive material are represented through two equations, one for actuation and other for sensing, both of which are coupled through magneto-mechanical coefficient. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In linear-coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and mechanical domain using two nonlinear curves, namely… More >

  • Open Access

    ARTICLE

    The Simulation of Diaphragm Deflection Actuated by Shear Mode Piezoelectric Actuator in Microdroplet Ejector

    C. H. Cheng1, S. C. Chen2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 205-212, 2004, DOI:10.3970/cmc.2004.001.205

    Abstract A shear mode piezoelectric actuator is applied to deflect the diaphragm of pressure chamber in the droplet ejector or inkjet printhead. The deflection of the bulge-diaphragm and resulting swept volume is analyzed by analytical and numerical method. With free-body treatment of the model, the analytical exact solutions for the two free bodies of bulge-diaphragm and piezoelectric beam were obtained. Also, the numerical solution by ANSYS is obtained to verify the analytical result. Besides, the whole-model solution coupling the bulge-diaphragm and piezoelectric beam together was obtained by ANSYS to compare with the result of free-body analysis. In order to estimate the… More >

Displaying 5341-5350 on page 535 of 5350. Per Page