Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access


    A Review of Leakage and Dispersion of LNG on the Ground

    Shi-er Dong1, Yiqing He1,*, Jingya Dong2, Zhouyu Peng3, Guohua Fu3

    Energy Engineering, Vol.118, No.1, pp. 103-118, 2021, DOI:10.32604/EE.2020.012362

    Abstract Based on the analysis of the whole process of LNG spill on land, the research methods of LNG pool expansion and heavy gas diffusion are summarized and analyzed. This paper reviews the experimental and analytical work performed to data on spill of LNG. Specifically, experiments on the spill of LNG onshore, as well as experiments and numerical study on heavy gas dispersion. Pool boiling and turbulence model are described and discussed, as well as models used to predict dispersion. Although there have been significant progress in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are… More >

  • Open Access


    Lattice Boltzmann Simulation of Magnetic Field Effect on Electrically Conducting Fluid at Inclined Angles in Rayleigh-Bénard Convection

    T. Ahmed1, S. Hassan1,2, M. F. Hasan3, M. M. Molla1,2,*, M. A. Taher4, S. C. Saha5

    Energy Engineering, Vol.118, No.1, pp. 15-36, 2021, DOI:10.32604/EE.2020.011237

    Abstract The magneto-hydrodynamics (MHD) effect is studied at different inclined angles in Rayleigh-Bénard (RB) convection inside a rectangular enclosure using the lattice Boltzmann method (LBM). The enclosure is filled with electrically conducting fluids of different characteristics. These characteristics are defined by Prandtl number, Pr. The considered Pr values for this study are 10 and 70. The influence of other dimensionless parameters Rayleigh numbers Ra = 103; 104; 105; 106 and Hartmann numbers Ha = 0, 10, 25, 50, 100, on fluid flow and heat transfer, are also investigated considering different inclined angles φ of magnetic field by analyzing computed local Nusselt… More >

  • Open Access


    Upgrading the Quality of Solid Fuel Made from Nyamplung (Calophyllum inophyllum) Wastes Using Hydrothermal Carbonization Treatment

    Riina Syivarulli1,2, Nugroho Agung Pambudi2,*, Mochamad Syamsiro3, Lip Huat Saw4

    Energy Engineering, Vol.118, No.1, pp. 189-197, 2021, DOI:10.32604/EE.2020.010493

    Abstract One of the major problems faced in managing biomass waste to higher quality products is choosing the right technology. Wastes are used as an alternative fuel, with increase in the calorific value. Hydrothermal carbonization (HTC) is a biomass conversion technology, used to obtain solid fuel. This study aims to utilize of Calophyllum inophyllum as an alternative solid fuel through HTC. The calorific value and proximate of the hydrochar will be determined and analyzed to find out its quality. The experiments were carried out at temperature variations of 160°C, 190°C, and 220°C and holding times of 30 and 60 minutes. The… More >

  • Open Access


    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

    Hanpeng Kou1, Tianlong Bu1, Leer Mao1, Yihong Jiao2,*, Chunming Liu2

    Energy Engineering, Vol.121, No.4, pp. 1027-1048, 2024, DOI:10.32604/ee.2023.045358


    In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network, a multi-objective two-stage decentralised wind power planning method is proposed in the paper, which takes into account the network loss correction for the extreme cold region. Firstly, an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation; secondly, a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss… More > Graphic Abstract

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

  • Open Access


    Research on Intelligent Energy Storage Control Method with Ethernet Communication

    Lu Wang1,2, Yulong Guo2, Jianbin Liang3,*, Haitao Tian4

    Energy Engineering, Vol.117, No.6, pp. 471-480, 2020, DOI:10.32604/EE.2020.011131

    Abstract The increasingly severe global energy crisis has brought great challenges to the energy field, and renewable energy power generation system has been widely concerned because of its characteristics of green and inexhaustible. However, renewable energy also has some limitations in its specific application, and affects the grid-connected power generation of new energy. In this paper, based on the background of photovoltaic power station, the intelligent energy storage control method for single inverter is put forward to assist a single inverter, and the DC component of fluctuating power is extracted by using the moving average function; furthermore, the intelligent energy storage… More >

  • Open Access


    Accurate Study and Evaluation of Small PV Power Generation System Based on Specific Geographical Location

    Lian Zhang1,2,3,5,*, Zijian Chen2, Heng Zhang3, Zenghong Ma4, Baowen Cao1, Lihong Song5

    Energy Engineering, Vol.117, No.6, pp. 453-470, 2020, DOI:10.32604/EE.2020.013276

    Abstract As an important new energy, solar energy has been extensively used in the world and different types of solar energy systems have been used in different fields. The photovoltaic power generation system has obvious advantage and high stability compared with other energy systems. Furthermore, the small-scale photovoltaic power generation system has a wider application in the field of power generation due to the performance of high efficiency. In this paper, the optimization research and system evaluation of small-scale photovoltaic power system have been studied in different areas by simulation and experimental methods. Based on the determination of photovoltaic model system,… More >

  • Open Access


    A Subsynchronous Oscillation Suppression Method Based on Self-Adaptive Auto Disturbance Rejection Proportional Integral Control of Voltage Source Converter Based Multi-Terminal Direct Current System with Doubly-Fed Induction Generator-Based Wind Farm Access

    Miaohong Su1, Haiying Dong1,2,*, Kaiqi Liu1, Weiwei Zou1

    Energy Engineering, Vol.117, No.6, pp. 439-452, 2020, DOI:10.32604/EE.2020.011805

    Abstract A subsynchronous oscillation suppression strategy based on self-adaptive auto disturbance rejection proportional integral controller is proposed for doublyfed induction generator-based wind farm integrated into grid through voltage source converter based multi-terminal direct current. In this strategy, the nonlinear PI controller is constructed by fal function to replace the traditional linear PI controller, and then the tracking differentiator is used to arrange the appropriate transition process in combination with the idea of active disturbance rejection control, and the self-adaptive auto disturbance rejection proportional integral controller is designed. By applying the controller to the inner loop of the converter on the rotor… More >

  • Open Access


    Investigation of Core Loss Calculation Methods for Nanocrystalline Core in Medium Frequency Range

    Yunxiang Guo1, Cheng Lu1,2, Feng Yu1, Liang Hua1, Xinsong Zhang1,*

    Energy Engineering, Vol.117, No.6, pp. 429-438, 2020, DOI:10.32604/EE.2020.011673

    Abstract Nanocrystalline core is often adopted in high-power medium-frequency transformer, whose excitation voltage is usually a rectangular wave with an adjustable duty ratio. In this paper, several kinds of methods are proposed for core loss calculation under non-sinusoidal voltage excitation by modifying the original Steinmetz equation (OSE). Firstly, these correction methods are compared in theory, and their analytical equations under rectangular voltage with an adjustable duty ratio are deduced. Then, a hysteresis loop measurement system is established to measure the core loss density of a nanocrystalline core. Based on the measured results of the core loss density under sinusoidal voltage excitation,… More >

  • Open Access


    Research on Effect of Icing Degree on Performance of NACA4412 Airfoil Wind Turbine

    Yuhao Jia1, Bin Cheng1,2,*, Xiyang Li1,2, Hui Zhang1,2, Yinglong Dong1

    Energy Engineering, Vol.117, No.6, pp. 413-427, 2020, DOI:10.32604/EE.2020.012019

    Abstract In order to study the effect of icing on the wind turbine blade tip speed ratio and wind energy utilization coefficient under working conditions, it is important to better understand the growth characteristics of wind turbine blade icing under natural conditions. In this paper, the icing test of the NACA4412 airfoil wind turbine was carried out using the natural low temperature wind turbine icing test system. An evaluation model of icing degree was established, and the influence of wind speed and icing degree on the performance parameters of wind turbines was compared and analyzed. It is shown that icing is… More >

  • Open Access


    Energy Retrofitting of School Buildings in UAE

    Abdelsalam Aldawoud*, Fatma Elzahraa Hosny, Rasha Mdkhana

    Energy Engineering, Vol.117, No.6, pp. 381-395, 2020, DOI:10.32604/EE.2020.011863

    Abstract The opportunities for energy savings by retrofitting of the existing school buildings in the United Arab Emirates (UAE) are significant because of their excessive energy consumption and space cooling demand. In this research, energy modeling and simulation are utilized with the use of Design Builder software to examine the influence of various retrofitting measures of air-conditioning (A/C) system and building envelope components on the energy use. Several combined measures are implemented and assessed to achieve the main goal of this research of selecting the best course of action to reduce cooling energy consumption for existing school buildings in the UAE.… More >

Displaying 481-490 on page 49 of 520. Per Page