Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access


    New Correlations for Determination of Optimum Slope Angle of Solar Collectors

    Ali Khosravi1,*, Oscar Ricardo Sandoval Rodriguez2, Behnam Talebjedi1, Timo Laukkanen1, Juan Jose Garcia Pabon3, Mamdouh El Haj Assad4

    Energy Engineering, Vol.117, No.5, pp. 249-265, 2020, DOI:10.32604/EE.2020.011024

    Abstract The energy coming from solar radiation could be harvested and transformed into electricity through the use of solar-thermal power generation and photovoltaic (PV) power generation. Placement of solar collectors (thermal and photovoltaic) affects the amount of incoming radiation and the absorption rate. In this research, new correlations for finding the monthly optimum slope angle (OSA) on flat-plate collectors are proposed. Twelve equations are developed to calculate the monthly OSA by the linear regression model, for the northern and the southern hemisphere stations from 15° to 55° and –20° to –45°, respectively. Also, a new equation for calculating the yearly tilt… More >

  • Open Access


    Evaluation of Small Wind Turbine Blades with Uni-Vinyl Foam Alignments Using Static Structural Analysis

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.4, pp. 237-248, 2020, DOI:10.32604/EE.2020.011304

    Abstract Mechanical characteristics of small wind turbine blades of National Advisory Committee for Aeronautics (NACA) 63-415 series with different Univinyl (UV) foam alignments have been evaluated experimentally using Universal Testing Machine and numerically using Finite Element Analysis (FEA) software ANSYS. The wind turbine blade models considered are selected from the NACA 63415 series to give a power output of 1 kW. The blades in this study are made like a sandwich beam structure. The outermost portion of the blade is made of glass fiber reinforced plastics with epoxy resin as composite and Uni-vinyl foam alignments are placed in the inner portion,… More >

  • Open Access


    Improvement and Experimental Study of Scroll Expander for Organic Rankine Cycle

    Lei Li1,2,3,*, Leren Tao2,3, Yanan Gou1, Shan Zhang1

    Energy Engineering, Vol.117, No.4, pp. 225-235, 2020, DOI:10.32604/EE.2020.010892

    Abstract The scroll expander used in organic Rankine cycle (ORC) system is improved, and its performance is analyzed experimentally. The modified profile and inlet hole of the scroll expander are enhanced, and the performance of the scroll expander before and after the improvement is analyzed. The results show that when the inlet pressure exceeds 0.7 MPa, the waist-shaped hole with a larger area is preferable. The scroll expander with a waist-shaped hole has a larger output power and wider optimal pressure range, and when the inlet pressure is 1.6 MPa, the maximum output power increases by 230 W. The output power… More >

  • Open Access


    Thermal Analysis of the Transcritical Organic Rankine Cycle Using R1234ze(E)/R134a Mixtures as Working Fluids

    Panpan Zhao1,*, Dongdong Wang2, Dao Zhou1, Huan Zhang1, Yun Sun1

    Energy Engineering, Vol.117, No.4, pp. 209-224, 2020, DOI:10.32604/EE.2020.010567

    Abstract A R1234ze(E) based mixture was investigated as a promising environmental solution to enhance system performance of a transctitical organic Rankine cycle(TORC). The main purpose of this study is to research the thermodynamic properties of TORC system using R1234ze(E)/R134a mixtures with various mass fraction of R1234ze(E) when recovering engine exhaust heat. R1234ze(E) was selected due to its zero ozone depletion potential, relative lower global warming potential and it can remedy the thermodynamic properties of traditional working fluid R134a. Thermal analysis and optimization about expander inlet temperature and pressure of TORC, mass fraction of R134a in R134a/R1234ze(E) mixtures are carried out. According… More >

  • Open Access


    Single Parameter Sensitivity Analysis of Ply Parameters on Structural Performance of Wind Turbine Blade

    Lanting Zhang, Laifu Guo, Qiang Rong*

    Energy Engineering, Vol.117, No.4, pp. 195-207, 2020, DOI:10.32604/EE.2020.010617

    Abstract The various ply parameters of composite wind turbine blade have crucial influence, of respectively varying degree, on the static strength and stiffness of the blade, elements closely related to its performance. In this article, the method of the single-parameter sensitivity analysis is presented. A 1.5 MW wind turbine blade is considered as the study object, where the load of the blade is calculated and the respective finite element model is established. According to engineering practice, the investigation range of ply parameters is determined, and the test design scheme of ply parameter for the blade is constructed. The Tsai-Wu failure factor… More >

  • Open Access


    Study of Solar Thermal Power Generation Based on Reverse Electrodialysis

    Jianjun He*, Ruifeng Wang, Yefeng Yin, Jian Chen, Chaoran Guo

    Energy Engineering, Vol.117, No.4, pp. 185-193, 2020, DOI:10.32604/EE.2020.011181

    Abstract TPG-RED (Thermal Power Generation Based on Reverse Electrodialysis) was studied to explore the new method of solar thermal power generating based on Reverse Electrodialysis (RED) in this paper. RED is a process that transfers the salinity gradient between sea water and fresh water to electricity. TPGRED has combined RED with thermal power generation to transfer thermal energy from solar to electricity which has many advantages of huge available temperature range, sustainability, non-pollution, simple structure, and so on. Respectively, using “1 mol/L H2SO4 solution—0.0001 mol/L H2SO4 solution” and “1 mol/L Na2SO4 solution—0.0001 mol/L Na2SO4 solution” as the working medium at 30°C… More >

  • Open Access


    Energy Efficiency Effectiveness of Smart Thermostat Based BEMS

    Koushik Mandlem, Bhaskaran Gopalakrishnan*, Ashish Nimbarte, Roseline Mostafa, Rupa Das

    Energy Engineering, Vol.117, No.4, pp. 165-183, 2020, DOI:10.32604/EE.2020.011406

    Abstract The research details the design and development of a spreadsheet based software system that has been built using the principles of Monte Carlo simulation. The simulation has been applied to a residential building with a certain number of rooms, each with specific characteristics pertaining to volume, occupancy, and thermostat set point. The consideration of variables related to the building envelope and weather, and the HVAC system have provided a realistic view that enables the accurate estimation of annual energy usage and costs. The main findings of the research are reflected in the sensitivity analysis that estimates energy use and cost… More >

  • Open Access


    An Energy Efficiency Improvement Method for Manufacturing Process Based on ECRSR

    Haiming Sun1,3, Quande Dong2,*, Cuixia Zhang2, Jianqing Chen3,4

    Energy Engineering, Vol.117, No.3, pp. 153-164, 2020, DOI:10.32604/EE.2020.010706

    Abstract The improvement of energy efficiency is considered as one of the keys to the sustainable development of manufacturing enterprises. This paper proposes an energy efficiency improvement method for the manufacturing process. Based on the analysis of the characteristics of energy consumption in the manufacturing process, a necessary energy consumption model, an assistant energy consumption model and an ineffective energy consumption model are constructed for identifying the energy consumption attributes of the manufacturing process. Then, the relationship model of energy consumption is built, and the energy efficiency improvement method for the manufacturing process is proposed based on ECRSR (Elimination, Combination, Rearrangement,… More >

  • Open Access


    Research on Optimal Matching of Heating Ventilation Air Conditioning System Based on Energy Saving Requirements

    Dongsheng Xu*

    Energy Engineering, Vol.117, No.3, pp. 143-152, 2020, DOI:10.32604/EE.2020.010335

    Abstract With the continuous development of society and the progress of science and technology, the living standards of the people also constantly improve, people pay more and more attention to the pursuit of material life, and the living space of everyday life and office space requirements are also rising, the air conditioning has become the essential in people’s daily life a kind of electrical equipment. The traditional optimal matching methods of heating, ventilation, air conditioning (HVAC) system have common problems such as long matching time, low matching accuracy and many matching times. The application of the best matching method of HAVC… More >

  • Open Access


    Dissolution and Degradation of Spent Radioactive Cation Exchange Resin by Fenton Oxidation Combining Microwave

    Jiangbo Li1,2, Lielin Wang1,2,*, Hua Xie1,2, Xiaoyu Li1,2, Zhiqiang Feng1,2, Wenxiu Zhang1,2

    Energy Engineering, Vol.117, No.3, pp. 129-142, 2020, DOI:10.32604/EE.2020.010336

    Abstract This study introduced a significantly effective approach called the microwave-enhanced Fenton method to degrade spent radioactive cation exchange resin. Compared with the Fenton (99% after 180 min) and photo-Fenton (90% after 198 min) reactions, this unique microwave-enhanced Fenton reaction has the highest degradation rate for spent radioactive cation exchange resin degradation (98.55% after 60 min). Carbon dioxide, sulfate and small molecular compounds were produced in the degradation of cation exchange resin, as determined by XRD and FT-IR. A model for the microwave-enhanced Fenton degradation mechanism of cation exchange resin was constructed. Microwaves were implemented to boost the concentration of hydroxyl… More >

Displaying 501-510 on page 51 of 520. Per Page