Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

    Zhengfan Lyu1,3, Yulin Li2,3, Mengmeng Fan1,3,*, Yan Huang1, Chenguang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.043512

    Abstract Red mud (RM) is a low-activity industrial solid waste, and its utilization as a resource is currently a hot topic. In this study, the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy. The performance of calcined red mud was determined through mortar strength tests. Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud, and increase the surface roughness and specific surface area. At the optimal temperature of 700°C, the addition of calcined red mud still leads to a decrease in mortar strength, but its… More > Graphic Abstract

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

  • Open Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.042654

    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes more obvious as the setting… More >

  • Open Access

    ARTICLE

    Analysis and Optimization of the Electrohydraulic Forming Process of Sinusoidal Corrugation Tubes

    Da Cai, Yinlong Song, Hao Jiang, Guangyao Li, Junjia Cui*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.025833

    Abstract Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness. They can be produced at room temperature by the electrohydraulic forming process. In the present study, the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed. In particular, the orthogonal experimental design (OED) and central composite design (CCD) methods have been used. Through the range analysis and variance analysis of the experimental data, the influence degree of wire diameter (WD) and discharge energy (DE) on the forming quality… More >

  • Open Access

    ARTICLE

    An Investigation into the Compressive Strength, Permeability and Microstructure of Quartzite-Rock-Sand Mortar

    Wei Chen*, Wuwen Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.029310

    Abstract River sand is an essential component used as a fine aggregate in mortar and concrete. Due to unrestrained exploitation, river sand resources are gradually being exhausted. This requires alternative solutions. This study deals with the properties of cement mortar containing different levels of manufactured sand (MS) based on quartzite, used to replace river sand. The river sand was replaced at 20%, 40%, 60% and 80% with MS (by weight or volume). The mechanical properties, transfer properties, and microstructure were examined and compared to a control group to study the impact of the replacement level. The results indicate that the compressive… More >

  • Open Access

    ARTICLE

    Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations

    Zhoujie Zhu1, Gang Wang1, Qingquan Liu1, Guojun Wang2, Rui Dong2, Dayong Zhang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.042128

    Abstract Important challenges must be addressed to make wind turbines sustainable renewable energy sources. A typical problem concerns the design of the foundation. If the pile diameter is larger than that of the jacket platform, traditional mechanical models cannot be used. In this study, relying on the seabed soil data of an offshore wind farm, the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters. An approach to determine the equivalent pile length is also proposed accordingly. The results provide evidence for the effectiveness and reliability of the model based… More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.029584

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very evident. As the flap height… More >

  • Open Access

    ARTICLE

    Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains

    Xiang Kan1, Yan Li2, Tian Li1,*, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.044050

    Abstract A pantograph serves as a vital device for the collection of electricity in trains. However, its aerodynamic resistance can limit the train’s running speed. As installing fairings around the pantograph is known to effectively reduce the resistance, in this study, different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed. In particular, this is accomplished through numerical simulations based on the k-ω Shear Stress Transport (SST) two-equation turbulence model. The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph, thereby reducing its aerodynamic resistance. However, it also induces interferences in… More >

  • Open Access

    ARTICLE

    Performance Characterization of CR/PU Asphalt for Potential Application in Assembled Fast-Repairing Engineering

    Hong Pang1, Ao Lu1, Ming Xiong1, Chen Chen1, Xian Cao1, Xiong Xu2,3,*, Jing Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.044000

    Abstract Conventional repairing methods for asphalt pavement have some inconveniences, such as insufficient strength, and are typically time-consuming. To address these issues, this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes. A series of composite modified asphalt binders with 10% crumb rubber (CR) and different dosages (0%, 1%, 3%, 5%) of polyurethane (PU) are examined to determine the optimized binder. Subsequently, the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties, such as moistureinduced damage, high-temperature deformation, and low-temperature cracking characteristics. The test… More >

  • Open Access

    ARTICLE

    Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves

    Mingming Zhao, Jialong Jiao*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.043744

    Abstract Predicting the response of liquefied natural gas (LNG) contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process. In this study, the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics (SPH) method. Firstly, the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver. Then, a three-dimensional simplified LNG carrier model, including two prismatic liquid tanks and a wave tank, was introduced. Different conditions were examined corresponding to… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO2 Injection

    Shasha Feng*, Yi Liao, Weixin Liu, Jianwen Dai, Mingying Xie, Li Li

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.041825

    Abstract Asphaltene deposition is a significant problem during gas injection processes, as it can block the porous medium, the wellbore, and the involved facilities, significantly impacting reservoir productivity and ultimate oil recovery. Only a few studies have investigated the numerical modeling of this potential effect in porous media. This study focuses on asphaltene deposition due to natural gas and CO2 injection. Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model. The results indicate that the injection of natural gas exacerbates asphaltene deposition, leading to a significant reduction in permeability near… More >

Displaying 61-70 on page 7 of 177. Per Page