Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (410)
  • Open Access

    EDITORIAL

    Renewable Biomass as a Platform for Preparing Green Chemistry

    Qiaoguang Li1,*, Puyou Jia2,*, Ying Luo3, Yue Liu4

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.044083

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Use of Additive Based on Non-Timber Forest Products for the Ecological Stabilization of Raw Earth: Case of the Parkia Biglobosa Nut and Vitellaria Paradoxa

    Bio Chéïssou Koto Tamou1,2,3, Jean-Michel Mechling2, Crespin Prudence Yabi1,*, Gildas Edjrossè F. Godonou3, Edmond Codjo Adjovi1, Mohamed Gibigaye3, André Lecomte2, Nicolas Brosse4

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.030509

    Abstract The housing sector today uses elaborate materials such as cement, iron, sand, often prohibitively expensive and whose production generates a strong environmental impact (scarcity of resources, transport, greenhouse gas greenhouse, etc.). In order to meet the challenges of sustainable development, earth construction is experiencing a resurgence of interest these days. Despite its many advantages, raw earth material has drawbacks, in particular its low mechanical resistance and its loss of geometric characteristics in the face of water, which slow down its development. As part of this study, the mechanical characteristics and durability of raw earth were improved by using residual water… More >

  • Open Access

    ARTICLE

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

    Budhi Priyanto1,2,*, Imam Khambali1,2, Irma Septi Ardiani2, Khoirotun Nadhiyah4, Anna Zakiyatul Laila2, M. Chasrun Hasani1, Bima Romadhon3, Retno Asih2, Yoyok Cahyono2, Triwikantoro2, Darminto2,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028619

    Abstract An a-C/a-C:N junction, which used palmyra sugar as the carbon source and ammonium hydroxide (NH4OH) as the dopant source, was successfully deposited on the ITO glass substrate using the nano-spraying method. The current-voltage relationship of the junction was found to be a Schottky-like contact, and therefore the junction shows the characteristic rectifiers. This means the a-C and a-C:N are semiconductors with different types of conduction. Moreover, the samples showed an increase in current and voltage value when exposed to visible light (bright state) compared to the dark condition, thereby, indicating the creation of electron-hole pairs during the exposure. It was… More > Graphic Abstract

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

  • Open Access

    ARTICLE

    Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg2+

    Jun Xiang1,2,*, Xiaoqing Chen1, Qi Liu1, Huihua Jing2, Tongqiang Chen2, Wanli Tang2, Wenyang Xu2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028090

    Abstract Biomass-derived carbon dots (C-dots) are considered a very important carbon material in metal ion detection of their small environmental impact, simple preparation process, and relatively low cost. A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study. The as-synthesized C-dots show excellent fluorescence properties, superior resistance to UV irradiation photobleaching, and high photostability in salt-containing solutions. The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg2+ selectively. The outcome relationship behaved linearly and was established based on a given range between 10–300 nM… More >

  • Open Access

    ARTICLE

    Effects of Biowaste-Derived Hydrochar on Anaerobic Digestion: Insights into Hydrochar Characteristics

    Hongqiong Zhang1,2,#, Xu Wang3,#, Zhaojing Qian4, Buchun Si1,4,*, Kai Jin5, Tengfei Wang5

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028438

    Abstract Hydrochar prepared with four typical biowastes, pine wood, food waste, digested sewage sludge, and Chlorella were applied for the promotion of anaerobic digestion. The gas production and substrate composition were analyzed associated with the hydrochar characteristics. The results suggested that Chlorella hydrochar (C-C) showed the highest cumulative yield of methane (approximately 345 mL) with high total organic carbon (TOC) removal efficiency and low volatile fatty acids (VAFs) concentration. Especially, food waste hydrochar (F-C) showed a poor effect on anaerobic digestion and aroused 1.4–1.6 g/L accumulation of VAFs, in which the toxic components may account for the low efficiency. The C-C… More >

  • Open Access

    ARTICLE

    Nail Holding Performance of Self-Tapping Screws on Masson Pine and Chinese Fir Dimension Lumbers

    De Li1,#, Bengang Zhang1,#, Yuan Tu1, Guoming Xiao1, Meifen Tian2, Xiaoxue Xu1, Xiao Zhong1, Qiaoyan Zhang3, Zhigang Wu1,*, Jiankun Liang4,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.027895

    Abstract Screw connection is a type most commonly applied to timber structures. As important commercial tree species in China, Masson pine and Chinese fir have the potential to prepare wood structures. In this study, the effects of the diameter of the self-tapping screw and the guiding bores on the nail holding performance on different sections of Masson pine and Chinese fir dimension lumbers were mainly explored. The results showed that: (1) The nail holding strength of the tangential section was the maximum, followed by that of the radial section, and that of the cross section was the minimum. (2) The nail… More >

  • Open Access

    ARTICLE

    Influence of Bayer Red Mud on the Operational and Mechanical Characteristics of Composite Cement Mortar

    Cheng Hu1,2, Weiheng Xiang1,3,*, Ping Chen2,3, Yi Yang4,5, Libo Zhou3, Jiufang Jiang5, Shunkai Li2,4, Yang Ming1, Qing Li3

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.027544

    Abstract The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars. The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity, mechanical strength, mineral composition, and microstructure of the composite cement mortar were systematically evaluated. The results showed that the optimal addition of red mud A was 10 wt%, while it was 20 wt% for red mud B. The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement. Furthermore, the composite mortar with… More >

  • Open Access

    ARTICLE

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

    Chunhua Liu1, Dongfang Zou1, Qinqin Huang1, Shang Li2, Xia Zheng1, Xingong Li1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028111

    Abstract The residual resources of ramie fiber-based textile products were used as raw materials. Ramie fiber felt (RF) was modified by NaClO2 aqueous solution and then impregnated with water-based epoxy resin (WER). RF/WER transparent composite materials were prepared by lamination hot pressing process. The composite materials’color difference, transmittance, haze, density, water absorption, and mechanical properties were determined to assess the effects of NaClO2 treatment and the number of ramie fiber layers on the properties of the prepared composites. The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO2 treatment. With the increase of ramie fiber… More >

  • Open Access

    ARTICLE

    Preparation of Iron-Pillared Bentonite/Oyster Shell Composite and Phosphate Adsorption in Water

    Zhijian Zhou1, Jie Yan1,*, Xinxiang Du1, Qiulin Xu1, Zijun Wu2, Jinlan Yang3, Xitong Fang1, Qiuling Zhong2, Qiaoguang Li1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.027852

    Abstract Iron-pillared bentonite (FB) was prepared by Fe(III) modified bentonite, and then the composites (FB-OS) were prepared by iron-pillared bentonite and oyster shell powder. The composites were characterized by FTIR, SEM, TGA, and EDS, and the phosphorus removal test was carried out. The results showed that FB-OS contained a large amount of CaO. Its structure was compact, but there were gaps in it. The maximum bending stress and compressive strength were 43.7 N and 0.927 MPa, respectively. The phosphorus removal test showed that the phosphorus removal rate of FB-OS was more than 90%, and measured the maximum adsorption capacity was 48.31… More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.030599

    Abstract Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an active substance which can… More >

Displaying 51-60 on page 6 of 410. Per Page