Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    P-Indeterminate Vector Similarity Measures of Orthopair Neutrosophic Number Sets and Their Decision-Making Method with Indeterminate Degrees

    Mailing Zhao1, Jun Ye1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1219-1230, 2021, DOI:10.32604/cmes.2021.016871

    Abstract In the complexity and indeterminacy of decision making (DM) environments, orthopair neutrosophic number set (ONNS) presented by Ye et al. can be described by the truth and falsity indeterminacy degrees. Then, ONNS demonstrates its advantages in the indeterminate information expression, aggregations, and DM problems with some indeterminate ranges. However, the existing research lacks some similarity measures between ONNSs. They are indispensable mathematical tools and play a crucial role in DM, pattern recognition, and clustering analysis. Thus, it is necessary to propose some similarity measures between ONNSs to supplement the gap. To solve the issue, this study firstly proposes the p-indeterminate… More >

  • Open Access

    ARTICLE

    An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints

    Jiaxiang Luo1,2, Yu Li2, Weien Zhou2, Zhiqiang Gong2, Zeyu Zhang1, Wen Yao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 823-848, 2021, DOI:10.32604/cmes.2021.016737

    Abstract Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years. However, the loss function of the above method is mainly based on pixel-wise errors from the image perspective, which cannot embed the physical knowledge of topology optimization. Therefore, this paper presents an improved deep learning model to alleviate the above difficulty effectively. The feature pyramid network (FPN), a kind of deep learning model, is trained to learn the inherent physical law of topology optimization itself, of which the loss function is composed of pixel-wise errors and physical constraints. Since the calculation of… More >

  • Open Access

    ARTICLE

    Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis

    Jianchen Wu1, Yujie Guo1,*, Fangli Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1007-1031, 2021, DOI:10.32604/cmes.2021.016475

    Abstract Spacecraft flexible appendages may experience thermally induced vibrations (TIV) under sudden heating loads, which in consequence will be unable to complete their intended missions. Isogeometric analysis (IGA) utilizes, in an isoparametric concept, the same high order and high continuity non-uniform rational B-splines (NURBS) to represent both the geometry and the physical field of the structure. Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved, IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli (EB) beam elements, therefore, does not need extra rotational degrees-of-freedom. In this paper, we present… More >

  • Open Access

    ARTICLE

    An Improved Graphics Processing Unit Acceleration Approach for Three-Dimensional Structural Topology Optimization Using the Element-Free Galerkin Method

    Haishan Lu, Shuguang Gong*, Jianping Zhang, Guilan Xie, Shuohui Yin

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1151-1178, 2021, DOI:10.32604/cmes.2021.016165

    Abstract We proposed an improved graphics processing unit (GPU) acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin (EFG) method. This method can effectively eliminate the race condition under parallelization. We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model. We explored the GPU parallel algorithm of assembling stiffness matrix, solving discrete equation, analyzing sensitivity, and updating design variables in detail. We also proposed a node pair-wise method for assembling the stiffness matrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization. Furthermore, we… More >

  • Open Access

    ARTICLE

    Implementing Delay Multiply and Sum Beamformer on a Hybrid CPU-GPU Platform for Medical Ultrasound Imaging Using OpenMP and CUDA

    Ke Song1,*, Paul Liu2, Dongquan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1133-1150, 2021, DOI:10.32604/cmes.2021.016008

    Abstract A novel beamforming algorithm named Delay Multiply and Sum (DMAS), which excels at enhancing the resolution and contrast of ultrasonic image, has recently been proposed. However, there are nested loops in this algorithm, so the calculation complexity is higher compared to the Delay and Sum (DAS) beamformer which is widely used in industry. Thus, we proposed a simple vector-based method to lower its complexity. The key point is to transform the nested loops into several vector operations, which can be efficiently implemented on many parallel platforms, such as Graphics Processing Units (GPUs), and multi-core Central Processing Units (CPUs). Consequently, we… More >

  • Open Access

    ARTICLE

    Reliability Analysis of Piled Raft Foundation Using a Novel Hybrid Approach of ANN and Equilibrium Optimizer

    Abidhan Bardhan1, Priyadip Manna1, Vinay Kumar1, Avijit Burman1, Bojan Žlender2, Pijush Samui1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1033-1067, 2021, DOI:10.32604/cmes.2021.015885

    Abstract In many civil engineering projects, Piled Raft Foundations (PRFs) are usually preferred where the incoming load from the superstructures is very high. In geotechnical engineering practice, the settlement of soil layers is a critical issue for the serviceability of the structures. Thus, assessment of risk associated with the structures corresponding to the maximum allowable settlement of soils needs to be carried out in the design phase. In this study, reliability analysis of PRF based on settlement criteria is performed using a high-performance hybrid soft computing model. The new approach is an integration of the artificial neural network (ANN) and a… More >

  • Open Access

    ARTICLE

    Cellular Automata Simulations of Random Pitting Process on Steel Reinforcement Surface

    Ying Wang*, Haoran Shi, Shibo Ren

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 967-983, 2021, DOI:10.32604/cmes.2021.015792

    Abstract The corrosion of reinforcement in the concrete will cause the effective cross-sectional area of reinforcement to be weakened and the performance of reinforcement to change and lead to the degradation of the bond behavior between reinforcement and concrete, which can seriously affect the mechanical properties of the structural elements. Therefore, it is of great practical significance to accurately simulate the corrosion morphology and the corrosion products of reinforcement. This paper improves the previous cellular automata models and establishes a new cellular automata model framework for simulating the random pitting corrosion process of reinforcement in concrete. This model defines the detailed… More >

  • Open Access

    ARTICLE

    Discontinuous-Galerkin-Based Analysis of Traffic Flow Model Connected with Multi-Agent Traffic Model

    Rina Okuyama1, Naoto Mitsume2, Hideki Fujii1, Hideaki Uchida1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 949-965, 2021, DOI:10.32604/cmes.2021.015773

    Abstract As the number of automobiles continues to increase year after year, the associated problem of traffic congestion has become a serious societal issue. Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks, and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies. Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations, macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities, and mesoscopic models and hybrid (or multiscale) models incorporating both microscopic and… More >

  • Open Access

    ARTICLE

    Improve the Accuracy of Fall Detection Based on Artificial Intelligence Algorithm

    Ming-Chih Chen, Yin-Ting Cheng*, Ru-Wei Chen

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1103-1119, 2021, DOI:10.32604/cmes.2021.015589

    Abstract This work presents a fall detection system based on artificial intelligence. The system incorporates miniature wearable devices for fall detection. Fall detection is achieved by integrating a three-axis gyroscope and a three-axis accelerometer. The system gathers the differential data collected by the gyroscope and accelerometer, applies artificial intelligence algorithms for model training and constructs an effective model for fall detection. To provide easy wearing and effective position detection, it is designed as a small device attached to the user’s waist. Experiment results have shown that the accuracy of the proposed fall detection model is up to 98%, demonstrating the effectiveness… More >

  • Open Access

    ARTICLE

    Solution of Modified Bergman Minimal Blood Glucose-Insulin Model Using Caputo-Fabrizio Fractional Derivative

    Ravi Shanker Dubey1, Dumitru Baleanu2,3, Manvendra Narayan Mishra1,*, Pranay Goswami4

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1247-1263, 2021, DOI:10.32604/cmes.2021.015224

    Abstract Diabetes is a burning issue in the whole world. It is the imbalance between body glucose and insulin. The study of this imbalance is very much needed from a research point of view. For this reason, Bergman gave an important model named-Bergman minimal model. In the present work, using Caputo-Fabrizio (CF) fractional derivative, we generalize Bergman’s minimal blood glucose-insulin model. Further, we modify the old model by including one more component known as diet D(t), which is also essential for the blood glucose model. We solve the modified model with the help of Sumudu transform and fixed-point iteration procedures. Also,… More >

Displaying 11461-11470 on page 1147 of 22360. Per Page