Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23,336)
  • Open Access

    ARTICLE

    Numerical Simulation of Melt Filling and Gas Penetration in Gas Assisted Injection Molding

    Qiang Li1, Jie Ouyang1, Guorong Wu1, Xiaoyang Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 215-232, 2011, DOI:10.32604/cmes.2011.082.215

    Abstract The governing equations of two-phase flows including gas and polymer melt are presented, which are solved using finite volume and domain extension methods with SIMPLEC technology. The melt filling and primary gas penetration in gas-assisted injection molding (GAIM) process are simulated, where the Cross-viscosity model is employed to describe the melt rheological behavior, and the CLSVOF(coupled Level Set and Volume of fluid) method is employed to capture the moving interfaces. In order to test and verify the coupled methods, melt filling in a rectangular plate with an insert is simulated, and the numerical results are More >

  • Open Access

    ARTICLE

    Numerical Study of Dynamic Compression Process of Aluminum Foam with Material Point Method

    Weiwei Gong1, Xiong Zhang1,2, Xinming Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 195-214, 2011, DOI:10.32604/cmes.2011.082.195

    Abstract Due to its high strength, low weight and strong anti impact capability, aluminum foam has great potential in the fields of transportation, aerospace and building structures as energy absorbing materials. Due to its complicated microstructures, it is desirable to develop an efficient numerical method to study the dynamic response of the aluminum foam under impact loading. In this paper, the material point method (MPM) is extended to the numerical simulation of the dynamic response of the aluminum foam under impact loading by incorporating the Deshpande Fleck's model and a volumetric strain failure model into our More >

  • Open Access

    ARTICLE

    A New Homotopy Perturbation Method for Solving an Ill-Posed Problem of Multi-Source Dynamic Loads Reconstruction

    Linjun Wang1, Xu Han2, Youxiang Xie3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 179-194, 2011, DOI:10.32604/cmes.2011.082.179

    Abstract In this paper, a new homotopy perturbation method (IHPM) is presented and suggested to solve an ill-posed problem of multi-source dynamic loads reconstruction. We propose a stable and reliable modification, and obtain a new regularization method, then employ it to find the exact solution for the multi-source dynamic load identification problem. Also, this present method only needs easy computations rather than successive integrations. Finally, the performances of two numerical examples are given. Comparisons are performed between the original homotopy perturbation method (HPM) and IHPM. The results verify that the present method is very simple and More >

  • Open Access

    ARTICLE

    2D Mixed Convection Viscous Incompressible Flows with Velocity-Vorticity Variables

    Alfredo Nicolás1, Blanca Bermúdez2

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 163-178, 2011, DOI:10.32604/cmes.2011.082.163

    Abstract Mixed convection viscous incompressible fluid flows, under a gravitational system, in rectangular cavities are reported using the unsteady Boussinessq approximation in velocity-vorticity variables. The results are obtained using a numerical method based on a fixed point iterative process to solve the nonlinear elliptic system that results after time discretization; the iterative process leads to the solution of uncoupled, well-conditioned, symmetric linear elliptic problems for which efficient solvers exist regardless of the space discretization. Results with different aspect ratios A up to Grashof numbers Gr = 100000 and Reynolds numbers Re = 1000 for the lid driven More >

  • Open Access

    ARTICLE

    An Integrated RBFN-Based Macro-Micro Multi-Scale Method for Computation of Visco-Elastic Fluid Flows

    C.-D. Tran1, D.-A. An-Vo1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 137-162, 2011, DOI:10.32604/cmes.2011.082.137

    Abstract This paper presents a numerical approach for macro-micro multi-scale modelling of visco-elastic fluid flows based on the Integrated Radial Basis Function Networks (IRBFNs) and the Stochastic Simulation Technique (SST). The extra stress is calculated using the Brownian configuration fields (BCFs) technique while the velocity field is locally approximated at a set of collocation points using 1D-IRBFNs. In this approach, the stress is decoupled from the velocity field and computed from the molecular configuration directly without the need for a closed form rheological constitutive equation. The equations governing the macro flow field are discretised using a More >

  • Open Access

    ARTICLE

    Strength of Brittle Materials under High Strain Rates in DEM Simulations

    Jorge Daniel Riera1, Letícia Fleck Fadel Miguel2, Ignacio Iturrioz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 113-136, 2011, DOI:10.32604/cmes.2011.082.113

    Abstract In the truss-like Discrete Element Method (DEM), masses are considered lumped at nodal points and interconnected by means of uni-dimensional elements with arbitrary constitutive relations. In previous studies of the tensile fracture behavior of concrete cubic samples, it was verified that numerical predictions of fracture of non-homogeneous materials using DEM models are feasible and yield results that are consistent with the experimental evidence so far available. Applications that demand the use of large elements, in which extensive cracking within the elements of the model may be expected, require the consideration of the increase with size… More >

  • Open Access

    ARTICLE

    Nonlinear Analysis of Axi-Symmetric Solid Using Vector Mechanics

    T.Y. Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 83-112, 2011, DOI:10.32604/cmes.2011.082.083

    Abstract In this work nonlinear analysis of axi-symmetric solid using vector mechanics is performed, in which a triangular solid unit developed in compliance with the concept of vector form analysis is proposed. The vector form analysis uses point value description (rather than function) to describe motion and configuration of solid, which has governing equation directly formulated with respect to each mass point (particle). The point value description includes particles allocation for configuration and defining path elements for particle motion. In addition, constitutive conditions are properly defined to complete the formulation. The constitutive conditions linking the mass… More >

  • Open Access

    ARTICLE

    Topology Optimization of a Linear Piezoelectric Micromotor Using the Smoothed Finite Element Method

    Mohsen Sadeghbeigi Olyaie1, Mohammad Reza Razfar2, Semyung Wang3, Edward J. Kansa4

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.1, pp. 55-82, 2011, DOI:10.32604/cmes.2011.082.055

    Abstract This paper presents the topology optimization design for a linear micromotor, including multitude cantilever piezoelectric bimorphs. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and the smoothed finite element method (S-FEM) is employed in the analysis of piezoelectric effects. Certainty variables such as weight of the structure and equilibrium equations are considered as constraints during the topology optimization design process, then a deterministic topology optimization (DTO) is conducted. To avoid the overly stiff behavior in FEM modeling, a relatively More >

  • Open Access

    ARTICLE

    Computations of a Compressible Turbulent Flow in a Rocket Motor-Chamber Configuration with Symmetric and Asymmetric Injection

    W.A. El-Askary1,2, A. Balabel2, S.M. El-Behery2, A. Hegab3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.1, pp. 29-54, 2011, DOI:10.32604/cmes.2011.082.029

    Abstract In the present paper, the characteristics of compressible turbulent flow in a porous channels subjected to either symmetric or asymmetric mass injection are numerically predicted. A numerical computer-program including different turbulence models has been developed by the present authors to investigate the considered flow. The numerical method is based on the control volume approach to solve the governing Reynolds-Averaged Navier-Stokes (RANS) equations. Turbulence modeling plays a significant role here, in light of the complex flow generated, so several popular engineering turbulence models with good track records are evaluated, including five different turbulence models. Numerical results… More >

  • Open Access

    ARTICLE

    The Finite Point Method for Reaction-Diffusion Systems in Developmental Biology

    Mehdi Tatari1, Maryam Kamranian2, Mehdi Dehghan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.1, pp. 1-28, 2011, DOI:10.32604/cmes.2011.082.001

    Abstract In this paper, the finite point method (FPM) is presented for solving nonlinear reaction-diffusion systems which are often employed in mathematical modeling in developmental biology. In order to avoid directly solving a coupled nonlinear system, a predicator-corrector scheme is applied. The finite point method is a truly meshfree technique based on the combination of the moving least squares approximation on a cloud of points with the point collocation method to discretize the governing equations. The lack of dependence on a mesh or integration procedure is an important feature, which makes the FPM simple, efficient and More >

Displaying 21421-21430 on page 2143 of 23336. Per Page