Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,225)
  • Open Access

    ARTICLE

    Estimation of the Residual Stiffness of Fire-Damaged Concrete Members

    J.M. Zhu1, X.C. Wang1, D. Wei2, Y.H. Liu2, B.Y. Xu2

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 261-274, 2011, DOI:10.3970/cmc.2011.022.261

    Abstract The residual stiffness of concrete member after fire is a very important parameter of the load-bearing ability and seismic performance of fire-damaged concrete structures. It is also one of the most important criteria for repairing and reinforcing the fire-damaged concrete structures. Based on the equivalent elastic modulus method, improved segment model method and parameter inversion method developed in this paper, the residual stiffness of concrete members exposed to standard fire is calculated and the effects of fire duration, steel ratio and section size on the stiffness are also presented in detail. The results show that these three methods can easily… More >

  • Open Access

    ARTICLE

    Estimation of Natural-Convection Heat-Transfer Characteristics from Vertical Fins Mounted on a Vertical Plate

    H. T. Chen1,K. H. Hsu1, S. K. Lee1, L. Y. Haung1

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 239-260, 2011, DOI:10.3970/cmc.2011.022.239

    Abstract The inverse scheme of the finite difference method in conjunction with the least-squares scheme and experimental measured temperatures is proposed to solve a two-dimensional steady-state inverse heat conduction problem in order to estimate the natural-convection heat transfer coefficient under the isothermal situation [`h] iso from three vertical fins mounted on a vertical plate and fin efficiency hf for various values of the fin spacing and fin height. The measured fin temperatures and ambient air temperature are measured from the present experimental apparatus conducted in a small wind tunnel. The heat transfer coefficient on the middle fin of three vertical fins… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Dynamic Fragmentation in Laser Shock-Loaded Gold and Aluminium Targets

    E. Lescoute1, T. De Rességuier1, J.-M. Chevalier2, J. Breil3, P.-H. Maire2, G. Schurtz3

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 219-238, 2011, DOI:10.3970/cmc.2011.022.219

    Abstract With the ongoing development of high energy laser facilities designed to achieve inertial confinement fusion, the ability to simulate debris ejection from metallic shells subjected to intense laser irradiation has become a key issue. We present an experimental and numerical study of fragmentation processes generating high velocity ejecta from laser shock-loaded metallic targets (aluminium and gold). Optical transverse shadowgraphy is used to observe and analyze dynamic fragmentation and debris ejection. Experimental results are compared to computations involving a fragmentation model based on a probabilistic description of material tensile strength. A correct overall consistency is obtained. More >

  • Open Access

    ARTICLE

    A Meshless Numerical Method for Kirchhoff Plates under Arbitrary Loadings

    Chia-Cheng Tsai 1

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 197-218, 2011, DOI:10.3970/cmc.2011.022.197

    Abstract This paper describes the combination of the method of fundamental solutions (MFS) and the dual reciprocity method (DRM) as a meshless numerical method to solve problems of Kirchhoff plates under arbitrary loadings. In the solution procedure, a arbitrary distributed loading is first approximated by either the multiquadrics (MQ) or the augmented polyharmonic splines (APS), which are constructed by splines and monomials. The particular solutions of multiquadrics, splines and monomials are all derived analytically and explicitly. Then, the complementary solutions are solved formally by the MFS. Furthermore, the boundary conditions of lateral displacement, slope, normal moment, and effective shear force are… More >

  • Open Access

    ARTICLE

    A Meshless Approach Towards Solution of Macrosegregation Phenomena

    Gregor Kosec1, Miha Založnik2, Božidar Šarler1, Hervé Combeau2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 169-196, 2011, DOI:10.3970/cmc.2011.022.169

    Abstract The simulation of macrosegregation as a consequence of solidification of a binary Al-4.5%Cu alloy in a 2-dimensional rectangular enclosure is tackled in the present paper. Coupled volume-averaged governing equations for mass, energy, momentum and species transfer are considered. The phase properties are resolved from the Lever solidification rule, the mushy zone is modeled by the Darcy law and the liquid phase is assumed to behave like an incompressible Newtonian fluid. Double diffusive effects in the melt are modeled by the thermal and solutal Boussinesq hypothesis. The physical model is solved by the novel Local Radial Basis Function Collocation Method (LRBFCM).… More >

  • Open Access

    ARTICLE

    Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model

    P. Zhao1, G. Shi1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 147-168, 2011, DOI:10.3970/cmc.2011.022.147

    Abstract The Poisson ratio is a very important mechanical parameter for both single-walled carbon nanotubes (SWCNTs) and graphene. But, the Poisson ratios of SWCNTs and graphene can not be determined by the direct measurement on the nanoscale specimen, and Poisson ratios of SWCNTs and graphene predicted by different models vary in a huge range. An improved molecular structural mechanics model, where the bond angle variations are modeled by the flexible connections of framed structures, is employed in this paper to predict the Poisson ratios of SWCNTs and monolayer graphene sheets. The present results indicate that the Poisson ratios of both SWCNTs… More >

  • Open Access

    ARTICLE

    Numerical Simulation on the Shielding Efficiency of Magnetic Shielding Enclosures in the ITER Applications

    Yong Kou1, Ke Jin1, Xiaojing Zheng1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 129-146, 2011, DOI:10.3970/cmc.2011.022.129

    Abstract Magnetic shielding needs to be employed to ensure proper operation of some electronic equipment which are sensitive to external magnetic interference, such as cryogenic valves located inside the ITER feeder cubicles. This paper is concerned with the shielding efficiency of the magnetic shielding enclosures. A 3-D theoretical model for Fe-Ni alloy magnetic shielding enclosures based on finite element method (FEM) is obtained with the nonlinear law of magnetization. The influence of shielding materials, enclosure configurations, single or multi- layer designs, and apertures on the shielding efficiency is investigated. It is shown that the proposed model can predict the shielding efficiency… More >

  • Open Access

    ARTICLE

    Orthogonal Tapered Beam Functions in the Study of Free Vibrations for Non-uniform Isotropic Rectangular Plates

    M.F. Liu1

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 97-128, 2011, DOI:10.3970/cmc.2011.022.097

    Abstract A new invented Orthogonal Tapered Beam Functions (OTBFs) have been introduced in this paper and used in accordance with the Rayleigh-Ritz method to determine the natural frequencies and mode shapes of the non-uniform rectangular isotropic plates with varying thickness in one or two directions. The generation of the OTBFs is based on the static solution of a one-dimensional beam problem subjected to constant applied load, and then extends to an orthogonal or orthonomal infinite set of admissible functions by performing the three-term recurrence scheme. A wide range of non-uniform rectangular plate whose domain is referenced by a so-called truncation factor… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Detonation and Multi-Material Interface Tracking

    Cheng Wang1, Jianguo Ning1, Tianbao Ma1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 73-96, 2011, DOI:10.3970/cmc.2011.022.073

    Abstract In this paper, we report high resolution simulations using a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method to examine the features of the detonation for gas and condensed explosives. A two-stage chemical reaction model and an ignition and growth model are employed to describe the chemical reaction process for gas and condensed explosives. Based on the Steger-Warming vector flux splitting method, a splitting method is employed when the vector flux does not satisfy the homogeneity property for simulating detonation wave propagation for condensed explosives. The sensibility of flame propagation process and explosion overpressure… More >

  • Open Access

    ARTICLE

    Nonlinear Finite Element Analysis of RC Structures Incorporating Corrosion Effects

    Smitha Gopinath1,2, A. Ramach,ra Murthy1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 55-72, 2011, DOI:10.3970/cmc.2011.022.055

    Abstract This paper presents the mathematical modeling techniques for nonlinear finite element analysis of RC structure to incorporate uniform corrosion effects. Effect of corrosion has been simulated as reduction in effective cross-sectional area of reinforcing bar, reduction in bonding phenomena and as reduction in material properties of reinforcing bar such as yield strength and elastic modulus. Appropriate constitutive laws for (i) corroded rebar elements and (ii) bond slip with corroded bar have been described. Procedure has been outlined to determine the global damage indicator by secant stiffness based approach. A corroded RC beam has been analysed to validate the proposed model… More >

Displaying 22041-22050 on page 2205 of 22225. Per Page