Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,249)
  • Open Access

    ARTICLE

    Improved Prediction and Understanding of Glass-Forming Ability Based on Random Forest Algorithm

    Chenjing Su1, Xiaoyu Li1,*, Mengru Li2, Qinsheng Zhu2, Hao Fu2, Shan Yang3

    Journal of Quantum Computing, Vol.3, No.2, pp. 79-87, 2021, DOI:10.32604/ jqc.2021.016651

    Abstract As an ideal material, bulk metallic glass (MG) has a wide range of applications because of its unique properties such as structural, functional and biomedical materials. However, it is difficult to predict the glass-forming ability (GFA) even given the criteria in theory and this problem greatly limits the application of bulk MG in industrial field. In this work, the proposed model uses the random forest classification method which is one of machine learning methods to solve the GFA prediction for binary metallic alloys. Compared with the previous SVM algorithm models of all features combinations, this new model is successfully constructed… More >

  • Open Access

    ARTICLE

    A Bi-Histogram Shifting Contrast Enhancement for Color Images

    Lord Amoah1,2,*, Ampofo Twumasi Kwabena3

    Journal of Quantum Computing, Vol.3, No.2, pp. 65-77, 2021, DOI:10.32604/jqc.2021.020734

    Abstract Recent contrast enhancement (CE) methods, with a few exceptions, predominantly focus on enhancing gray-scale images. This paper proposes a bihistogram shifting contrast enhancement for color images based on the RGB (red, green, and blue) color model. The proposed method selects the two highest bins and two lowest bins from the image histogram, performs an equalized number of bidirectional histogram shifting repetitions on each RGB channel while embedding secret data into marked images. The proposed method simultaneously performs both right histogram shifting (RHS) and left histogram shifting (LHS) in each histogram shifting repetition to embed and split the highest bins while… More >

  • Open Access

    ARTICLE

    Malware Detection Based on Multidimensional Time Distribution Features

    Huizhong Sun1, Guosheng Xu1,*, Hewei Yu2, Minyan Ma3, Yanhui Guo1, Ruijie Quan4

    Journal of Quantum Computing, Vol.3, No.2, pp. 55-63, 2021, DOI:10.32604/jqc.2021.017365

    Abstract Language detection models based on system calls suffer from certain false negatives and detection blind spots. Hence, the normal behavior sequences of some malware applications for a short period can become malicious behavior within a certain time window. To detect such behaviors, we extract a multidimensional time distribution feature matrix on the basis of statistical analysis. This matrix mainly includes multidimensional time distribution features, multidimensional word pair correlation features, and multidimensional word frequency distribution features. A multidimensional time distribution model based on neural networks is built to detect the overall abnormal behavior within a given time window. Experimental evaluation is… More >

  • Open Access

    ARTICLE

    New Quantum Private Comparison Using Hyperentangled GHZ State

    Jerrel Gianni1, Zhiguo Qu2,*

    Journal of Quantum Computing, Vol.3, No.2, pp. 45-54, 2021, DOI:10.32604/jqc.2021.019675

    Abstract In this paper, we propose a new protocol designed for quantum private comparison (QPC). This new protocol utilizes the hyperentanglement as the quantum resource and introduces a semi-honest third party (TP) to achieve the objective. This protocol’s quantum carrier is a hyperentangled three-photon GHZ state in 2 degrees of freedom (DOF), which could have 64 combinations. The TP can decide which combination to use based on the shared key information provided from a quantum key distribution (QKD) protocol. By doing so, the security of the protocol can be improved further. Decoy photon technology is also used as another means of… More >

  • Open Access

    ARTICLE

    Tannin Nanoparticles (NP99) Enhances the Anticancer Effect of Tamoxifen on ER+ Breast Cancer Cells

    Faizah A. AlMalki1, Aziza M. Hassan2,*, Zeinab M. Klaab1, Soliman Abdulla3, Antonio Pizzi4

    Journal of Renewable Materials, Vol.9, No.12, pp. 2077-2092, 2021, DOI:10.32604/jrm.2021.016173

    Abstract Recently, natural substances in the form of nanoparticles are increasingly being used in different field, particularly in medicines to enhance their beneficial effects in treatment and prevention. Cancer cells of the breast (MCF-7) have been chosen to be examined and treated in vitro with conventional drug Tamoxifen (Tam) and tannin nanoparticles extract (NP99) individually or in combination. MTT reagent has been applied to assess the cell viability and propagation percentage, DNA fragmentation and mRNA relative expression of apoptotic genes to study the cell death pathway. The results showed that Tam and tannin NP99 triggered cytotoxic activity towards the MCF-7 cell.… More >

  • Open Access

    ARTICLE

    The Arrangement and Size of Cellulose Microfibril Aggregates in the Cell Walls of Sclerenchyma Fibers and Parenchyma Tissue in Bamboo

    Wenting Ren1,3, Fei Guo2, Minghui Liu1,3, Haocheng Xu1,3, Hankun Wang1,3, Yan Yu1,2,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2291-2301, 2021, DOI:10.32604/jrm.2021.015973

    Abstract Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization. Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix. In the present study, the size and arrangement of cellulose microfibril aggregates in the cell walls of sclerenchyma fibers and parenchyma cells in moso bamboo were investigated with NMR and FE-SEM. The NMR measurement showed that the characteristic sizes of the microfibril aggregates of fibers and parenchyma cells were approximately 25.8 nm and 18.8 nm, respectively. Furthermore, high-resolution SEM showed the size of microfibril aggregates varied little across the cell wall of… More >

  • Open Access

    ARTICLE

    An α-Fe2O3/Circulating Fluidized Bed Fly Ash Based Geopolymer Composite Anode for Electrocatalytic Degradation of Indigo Carmine Dye Wastewater

    Jiaqian Lei, Yaojun Zhang*, Panyang He

    Journal of Renewable Materials, Vol.9, No.12, pp. 2277-2289, 2021, DOI:10.32604/jrm.2021.015824

    Abstract Geopolymers have been developed to various catalysts due to their advantages. However, low conductivity restricts their application in the electrocatalysis field. In this study, an α-Fe2O3/circulating fluidized bed fly ash based geopolymer (CFAG) composite anode was fabricated using a facile dip-coating method by loading α-Fe2O3 in the matrix of CFAG. The effects of α-Fe2O3 content on the composition, surface morphology and electrochemical performance of α-Fe2O3/CFAG composite anode were investigated. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results demonstrated that α-Fe2O3 was successfully inlaid with the surface of amorphous CFAG matrix. The electrochemical measurements indicated that α-Fe2O3/CFAG composite anode… More > Graphic Abstract

    An α-Fe<sub>2</sub>O<sub>3</sub>/Circulating Fluidized Bed Fly Ash Based Geopolymer Composite Anode for Electrocatalytic Degradation of Indigo Carmine Dye Wastewater

  • Open Access

    ARTICLE

    Different Effects of Wet and Dry Grinding on the Activation of Iron Ore Tailings

    Yingchun Yang1,*, Liqing Chen1, Yuguang Mao2

    Journal of Renewable Materials, Vol.9, No.12, pp. 2261-2276, 2021, DOI:10.32604/jrm.2021.015793

    Abstract Improving the activity of Iron Ore Tailings (IOTs) to utilize them as a mineral admixture in cement-based minerals is still challenging. In this paper, the wet grinding technology was employed to stimulate the activity of IOTs, and the traditional dry grinding method was used as a reference. The effect of wet grinding on the activation of IOTs was evaluated through ion leaching from an alkaline solution and the reactivity index. Additionally, a detailed comparison between Dry-grinding Iron Ore Tailings (DIOTs) and Wet-grinding Iron Ore Tailings (WIOTs) was made. This comparison was based on particle characteristics, crystal structures, chemical structure, and… More > Graphic Abstract

    Different Effects of Wet and Dry Grinding on the Activation of Iron Ore Tailings

  • Open Access

    ARTICLE

    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

    Jian Yang, Xiaoli Li*, Hui Wang, Kaiqiang Geng

    Journal of Renewable Materials, Vol.9, No.12, pp. 2241-2260, 2021, DOI:10.32604/jrm.2021.015565

    Abstract In the present study, in order to investigate the effects of fly ash on the structural evolution and strength damage mechanism of Pisha-sandstone cement soil, unconfined compressive strength tests of Pisha-sandstone cement soil with different fly ash content levels and various ages were carried out. The apparent morphology, microstructures, and chemical compositions of the samples were observed and analyzed using ultra-depth three-dimensional microscopy, scanning electron microscopy, and XRD methods. The results revealed that the unconfined compressive strength levels of Pisha-sandstone cement soil samples displayed increasing trends with the increases in fly ash content and age. For example, when the fly… More > Graphic Abstract

    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

  • Open Access

    ARTICLE

    Prediction of Mechanical Properties of Structural Bamboo and Its Relationship with Growth Parameters

    Pengcheng Liu, Ping Xiang, Qishi Zhou*, Hai Zhang, Jiefu Tian, Misganu Demis Argaw

    Journal of Renewable Materials, Vol.9, No.12, pp. 2223-2239, 2021, DOI:10.32604/jrm.2021.015544

    Abstract Bamboo is a renewable natural building material with good mechanical properties. However, due to the heterogeneity and anisotropy of bamboo stalk, a large amount of material performance testing costs are required in engineering applications. In this work, longitudinal compression, bending, longitudinal shear, longitudinal tensile, transverse compression and transverse tensile tests of bamboo materials are conducted, considering the influence of the bamboo nodes. The mechanical properties of the whole bamboo stalk with the wall thickness and outer circumference are explored. Through univariate and multiple regression analysis, the relationship between mechanical properties and wall thickness and perimeter is fitted, and the conversion… More > Graphic Abstract

    Prediction of Mechanical Properties of Structural Bamboo and Its Relationship with Growth Parameters

Displaying 11671-11680 on page 1168 of 22249. Per Page