Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ABSTRACT

    Virtual Research Environment Integrating Heterogeneous Data Resources for Materials Science and Engineering

    Toshihiro Ashino1,*, Nobutaka Nishikawa2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 137-137, 2019, DOI:10.32604/icces.2019.05454

    Abstract Materials performance analysis process requires integration of many heterogeneous data and information resources, e.g. experimental data, empirical models and computational simulation. Virtual Research Environment (VRE) for materials science and engineering should support each data handling processes, data retrieval, conversion, statistical analysis, symbolic manipulation and visualization within single interactive and scripting environment.
    Furthermore, in order to integrate heterogeneous data, it requires a common dictionary which describe semantic relationships among these data resources. It is required to identify corresponding data items from different data resources. It can be a flat structured table, but an ontology which describes semantic relationships among concepts,… More >

  • Open Access

    ABSTRACT

    Prediction Models Generation by Machine Learning for Structural Materials Performance by Utilizing the Mi System

    Satoshi Minamoto*, Takuya Kadohira, Kaita Ito, Makoto Watanabe, Masahiko Demura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 136-136, 2019, DOI:10.32604/icces.2019.05447

    Abstract The Materials Integration (MI) System is a domestically developed system in the “Cross-ministerial Strategic Innovation Promotion Program” to analyze structural materials performance. The performance on structural materials having complicated inputs/outputs would be solved with the combination of different scientific programs or data from experiment. One of the merits of constructing a combined model (here we call workflow) is that calculations are performed and the data would be stored in the system automatically.
    Furthermore, we developed a web application (“MIREA”: MI REgression Analyzer) that enables us to build high versatile prediction models based on machine learning techniques by using the… More >

  • Open Access

    ABSTRACT

    Establishment of Structure-Property Linkages Using a Bayesian Model Selection Method: Application to A Dual-Phase Metallic Composite System

    Hoheok Kim1, Tatsuki Yamamoto2, Yushi Sato1, Junya Inoue1,3,4,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 135-135, 2019, DOI:10.32604/icces.2019.05453

    Abstract The viability of establishing low-cost surrogate structure-property (S-P) linkages which applies a Bayesian model selection method to the Materials Knowledge System (MKS) homogenization framework is studied. The MKS framework employs the n-point correlation function, principal component analysis, and regression techniques for mapping between the structural factors and the property of a material. However, the framework chooses the factors not by their influence on the property but by their amount of inherent microstructural information. This also makes it difficult to find out which microstructural morphology affects the property. In the present work, we introduced a Bayesian model selection method to choose… More >

  • Open Access

    ABSTRACT

    Connection and Execution of Prediction Modules Using the MI Workflow System

    Kaita Ito*, Satoshi Minamoto, Takuya Kadohira, Makoto Watanabe, Masahiko Demura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 134-134, 2019, DOI:10.32604/icces.2019.05440

    Abstract In the Materials Integration (MI) system, workflow designers and players are implemented as ones of the core subsystems. When the user wants to predict a certain material parameter by using the MI system, the user selects a prediction module in the workflow designer that can output the objective parameter. If the all required input parameters of the prediction module are not given directly, further modules can be connected.
    Each input and output parameters of the prediction module on the MI system is directly associated with one term of material science and engineering. It is not defined as a specific… More >

  • Open Access

    ABSTRACT

    Experimental Investigation and Thermodynamic Assessment of the Fe-Base Alloy System

    Ikuo Ohnuma, Machiko Ode

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 133-133, 2019, DOI:10.32604/icces.2019.05431

    Abstract Experimental investigation of phase equilibria in the Fe-Mn, Fe-Si, Fe-Al and Fe-Mn-Si-C systems was carried out. In the Fe-Mn system, α/γ equilibrium at temperatures below 600°C was revised by equilibration of severely deformed powder samples in which the α/γ equilibrated microstructures at low temperatures could be realized. In the Fe-Si and Fe-Al systems, the miscibility gap between A2, B2 and D03 phases as well as the A2/B2/D03 transition boundaries were determined precisely. Phase equilibria in the Al-rich region of the Fe-Al system were determined in detail. The α/γ equilibria in the Fe-Mn-C, Fe-Mn-C and Fe-Mn-Si-C systems were determined by FE-EPMA,… More >

  • Open Access

    ABSTRACT

    Development of Materials Integration System for Structural Materials

    M. Watanabe*, S. Minamoto, T. Kadohira, K. Ito, M. Demura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 131-132, 2019, DOI:10.32604/icces.2019.05416

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Universal Framework of Bayesian Creep Model Selection for Steel

    Yoh-ichi Mototake1, Hitoshi Izuno2, Kenji Nagata3,4, Masahiko Demura2 , Masato Okada1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 129-130, 2019, DOI:10.32604/icces.2019.05389

    Abstract The creep deformation process is constructed by complex interactions of multiple factors, and the measurement of creep deformation requires enormous economic costs and a long experimental time, so there is a small amount of measurement data. In such a situation, multiple models are often proposed to explain the same experimental data. The coexistence of multiple models based on different physical assumptions makes it difficult to understand the creep deformation process.
    The purpose of this study is to construct a framework to compare and evaluate coexistence models based on measurement data using the Bayesian model selection framework. Basically, in the… More >

  • Open Access

    ABSTRACT

    Descriptor Extraction on Inherent Creep Strength of Carbon Steels by Exhaustive Search

    Junya Sakurai1, Junya Inoue2,3,4, Masahiko Demura4,*, Yoichi Mototake5, Masato Okada4,5, Masayoshi Yamazaki4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 128-128, 2019, DOI:10.32604/icces.2019.05408

    Abstract According to the inherent creep strength concept proposed by Kimura et al., microstructural strengthening effect is expiring after a long-term creep deformation at high temperature. In the region, the solid solution hardening effect becomes dominant so that the rupture time is expected to be a simple function of chemical composition and test conditions. In fact, they found that there was a linear relationship between logarithm rupture time and the amount of Mo for the carbon steel JIS STB410. They also found the positive correlations of Cr and Mn to the logarithmic rupture time. However, it is difficult to specify the… More >

  • Open Access

    ABSTRACT

    Data Assimilation for Grain Growth Prediction via Multi-Phase-Field Models

    Hiromichi Nagao1,2,*, Shin-ichi Ito1,2, Tadashi Kasuya3, Junya Inoue4,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 127-127, 2019, DOI:10.32604/icces.2019.05384

    Abstract Data assimilation (DA) is a computational technique to integrate numerical simulation models and observational/experimental data based on Bayesian statistics. DA is accepted as an essential methodology for the modern weather forecasting, and is applied to various fields of science including structural materials science. We propose a DA methodology to evaluate unobservable parameters involved in multi-phase-field models with the aim of accurately predicting the observed grain growth, such as in metals and alloys. This approach integrates models and a set of observational image data of grain structures. Since the set of image data is not a time series, directly applying conventional… More >

  • Open Access

    ABSTRACT

    Role of Microstructure on Small Fatigue Crack Initiation and Propagation behavior of Rolled and Forged Ti-6Al-4V Alloy

    Hideaki NISHIKAWA*, Yoshiyuki FURUYA

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 126-126, 2019, DOI:10.32604/icces.2019.05354

    Abstract Fatigue life is determined by microscopic fatigue crack initiation and growth. Since fatigue crack is generally initiated on the slip plane of microstructure and propagated by slip deformation of the crack tip, fatigue life should depends on microstructure. To computationally simulate the effect of microstructure on fatigue property, it is necessary to understand microstructural small fatigue crack initiation and growth behavior. Although Ti-6Al-4V alloy has superior fatigue strength, fatigue strength of forged pancake, used for such as airplane engine, is normally lower than that of rolled alloy. It is possibly comes from microstructural difference, such as micro-texture. However, it is… More >

Displaying 17991-18000 on page 1800 of 22360. Per Page