Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,212)
  • Open Access

    ARTICLE

    Flexoelectricity in Solid Dielectrics: From Theory to Applications

    Jianfeng Lu1, Xu Liang1,2, Shuling Hu1,2

    CMC-Computers, Materials & Continua, Vol.45, No.3, pp. 145-162, 2015, DOI:10.3970/cmc.2015.045.145

    Abstract Flexoelectricity phenomenologically describes the universal electromechanical coupling effect between electric polarization and strain gradient, and electric field gradient and elastic strain. In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists, commonly, in all solid dielectrics. In this paper, a summary of the research on flexoelectricity is presented to illustrate the development of this topic. Flexoelectricity still have many open questions and unresolved issues in the developing field, although it has attracted a surge of attention recently. Here we review the theoretical investigations and experimental studies on flexoelectricity, and the aim of the current paper is… More >

  • Open Access

    ARTICLE

    Finite Deflection of Slender Cantilever with Predefined Load Application Locus using an Incremental Formulation

    D. Pandit1, N. Thomas2, Bhakti Patel1, S.M. Srinivasan1

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 127-144, 2015, DOI:10.3970/cmc.2015.045.127

    Abstract In this paper, a class of problems involving space constrained loading on thin beams with large deflections is considered. The loading is such that, the locus of the force application point moves along an arbitrarily predefined path, fixed in space. Both linear elastic as well as elastic-perfectly plastic materials are considered. A simplification is realized using the moment-curvature relationship directly. The governing equation obtained is highly non-linear owing to inclusion of both material and geometric non-linearity. A general algorithm is described to solve the governing equation using an incremental formulation coupled with Runge Kutta 4th order initial value explicit solver.… More >

  • Open Access

    ARTICLE

    Structural Continuous Dependence in Micropolar Porous Bodies

    M. Marin1,2, A.M. Abd-Alla3,4, D. Raducanu1, S.M. Abo-Dahab3,5

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 107-126, 2015, DOI:10.3970/cmc.2015.045.107

    Abstract Our study is dedicated to mixed initial boundary value problem for porous micropolar bodies. We prove that the solution of this problem depends continuously on coefficients which couple the micropolar deformation equations with the equations that model the evolution of voids. The evaluation of this dependence is made by using an appropriate measure. More >

  • Open Access

    ARTICLE

    Dynamics of the Moving Load Acting on the Hydro-elastic System Consisting of the Elastic Plate, Compressible Viscous Fluid and RigidWall

    S.D. Akbarov1,2, M.I. Ismailov3

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 75-106, 2015, DOI:10.3970/cmc.2015.045.075

    Abstract The subject of the paper is the study of the dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall. Under this study the motion of the plate is described by linear elastodynamics, and the motion of the compressible viscous fluid is described by the linearized Navier-Stokes equations. Numerical results are obtained for the case where the material of the plate is steel, but the fluid material is Glycerin. According to these results, corresponding conclusions related to the influence of the problem parameters, such as fluid viscosity, plate thickness,… More >

  • Open Access

    ARTICLE

    Impact Response of Stiffened Cylindrical Shells With/without Holes Based on Equivalent Model of Isogrid Structures

    Qingsheng Yang1,2, Shaochong Yang1,3, Xiaohu Lin4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 57-74, 2015, DOI:10.3970/cmc.2015.045.057

    Abstract An equivalent continuum model of an isogrid structure is utilized to analyze the impact response of isogrid structures and stiffened structures. The parameters of the equivalent model are determined, and the comparison between the equivalent continuous structure and the real grid structure are examined to validate the reliability of the equivalent model. Then, the impact responses of stiffened cylindrical shells with and without an elliptical hole are investigated by using the equivalent model of grid structures. For a different location and geometry of the elliptical hole, the deformation and load-bearing capacity of the grid-stiffened cylindrical shells are studied. The numerical… More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

  • Open Access

    ARTICLE

    Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale

    Ang Li1, Guo-jian Shao1,2, Pei-rong Du3, Sheng-yong Ding1, Jing-bo Su4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 17-38, 2015, DOI:10.3970/cmc.2015.045.017

    Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing (SRG) is proposed, instead of… More >

  • Open Access

    ARTICLE

    On Improving the Celebrated Paris’ Power Law for Fatigue, by Using Moving Least Squares

    Leiting Dong1,2, Robert Haynes3, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 1-16, 2015, DOI:10.3970/cmc.2015.045.001

    Abstract In this study, we propose to approximate the a-n relation as well as the da/dn-∆K relation, in fatigue crack propagation, by using the Moving Least Squares (MLS) method. This simple approach can avoid the internal inconsistencies caused by the celebrated Paris’ power law approximation of the da/dn-∆K relation, as well as the error caused by a simple numerical differentiation of the noisy data for a-n measurements in standard fatigue tests. Efficient, accurate and automatic simulations of fatigue crack propagation can, in general, be realized by using the currently developed MLS law as the “fatigue engine” [da/dn versus ∆K], and using… More >

  • Open Access

    ARTICLE

    Wrinkling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation

    Zhicheng Ou1, Xiaohu Yao1, Xiaoqing Zhang1,2, Xuejun Fan3

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 205-222, 2014, DOI:10.3970/cmc.2014.044.205

    Abstract The buckling of a thin film on a compressible compliant substrate in large deformation is studied. A finite-deformation theory is developed to model the film and the substrate under different original strain-free configurations. The neo-Hookean constitutive relation is applied to describe the substrate. Through the perturbation analysis, the analytical solution for this highly nonlinear system is obtained. The buckling wave number, amplitude and critical condition are obtained. Comparing with the traditional linear model, the buckling amplitude decreases. The wave number increases and relates to the prestrain. With the increment of Poisson’s ratio of the substrate, the buckling wave number increases,… More >

  • Open Access

    ARTICLE

    Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method

    Hao Zuo1,2, Zhibo Yang1,2,3, Xuefeng Chen1,2, Yong Xie4, Xingwu Zhang1,2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 167-204, 2014, DOI:10.3970/cmc.2014.044.167

    Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence,… More >

Displaying 21881-21890 on page 2189 of 22212. Per Page