Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,939)
  • Open Access

    ARTICLE

    Optimization of Nonlinear Vibration Characteristics for Seismic Isolation Rubber

    A. Takahashi1, T. Shibata2, K. Motoyama3, K. Misaji4

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 1-15, 2017, DOI:10.3970/cmes.2017.113.001

    Abstract A method for reducing the damage to a structure caused by an earthquake namely, using laminated rubber for seismic isolation is proposed, and the vibration characteristics of the rubber (which minimizes the seismic response of the structure during an earthquake) is optimized. A method called “Equivalent Linear System using Restoring Force Model of Power Function Type” (PFT-ELS) is applied to nonlinear vibration analysis of the rubber. In that analysis, a building with 15 layers of the laminated rubber is modeled. The seismic response of the building is analyzed, and the usefulness of the laminated rubber More >

  • Open Access

    ARTICLE

    Mixed Convection in a Lid-Driven Square Cavity With Heat Sources Using Nanofluids

    Ilhem Zeghbid1, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 251-273, 2017, DOI:10.3970/fdmp.2017.013.251

    Abstract This paper presents a numerical study of two-dimensional laminar mixed convection in a lid-driven square cavity filled with a nanofluid and heated simultaneously at a constant heat flux q” by two heat sources placed on the two vertical walls. The movable wall and the bottom wall of the cavity are maintained at a local cold temperature TC, respectively. The finite volume method was used to solve the equations of flow with heat transfer across the physical domain. Comparisons with previous results were performed and found to be in excellent agreement. Results were presented in terms of… More >

  • Open Access

    ARTICLE

    Numerical Analysis on Unsteady Internal Flow in an Evaporating Droplet

    Zhentao Wang1,*, Kai Dong, Shuiqing Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 221-234, 2017, DOI:10.3970/fdmp.2017.013.221

    Abstract We have investigated the unsteady internal flow occurring in an evaporating droplet interacting with a high-temperature atmospheric environment. The Navier-Stokes equations for both the liquid and the gas phases have been solved numerically in the framework of a Volume of Fluid (VOF) method relying on the so-called Continuum Surface Force (CSF) model. A specific kernel able to account for evaporation and related phase change has been incorporated directly in the VOF approach. The temperature distributions within the droplet has been found to be relatively uniform by virtue of the Marangoni flow. The transient evolution of More >

  • Open Access

    ARTICLE

    Experimental Investigation on Thermal Diffusion in Ternary Hydrocarbon Mixtures

    S. A. Mousavi1, T. Yousefi2, Z. Saghir3

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 213-220, 2017, DOI:10.3970/fdmp.2017.013.213

    Abstract The main goal of this study was to investigate the thermal diffusion in ternary hydrocarbon mixtures composed of 1, 2, 3, 4 Tetrahydronaphtalene (THN)-Isobutylbenzene (IBB)-Dodecane (C12) with mass fractions of 80/10/10, 70/10/20, and 60/10/30 at mean temperature of 25 °C. Optical interferometry technique with Mach-Zehnder arrangement was used to conduct the experiments. The mixture was placed in a convectionless cell which was heated from above. The results for the mixture with mass fraction of 80/10/10 were in a good agreement with the corresponding benchmark values. Finally, the Soret coefficient for the other two mixtures have More >

  • Open Access

    ARTICLE

    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of… More >

  • Open Access

    ARTICLE

    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number… More >

  • Open Access

    ARTICLE

    A Note on the Transient Electrohydrodynamics of a Liquid Drop

    Asghar Esmaeeli1, Ali Behjatian1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 143-153, 2017, DOI:10.3970/fdmp.2017.013.143

    Abstract The evolution of the flow field in and around a liquid drop in a unifor-m electric field for fluid systems corresponding to region (II) of the circulation-deformation map is fundamentally different than that for the rest of the map and has not been explored before. This is examined here and justified mathematical-ly. Furthermore a methodology is developed to predict the flow pattern, which is likely to be helpful in predicting the evolution of the flow field in more complex circumstances. More >

  • Open Access

    ARTICLE

    Optimizing the Design of PV Solar Reverse Osmosis Unit (RO/PV) by using Genetic Algorithms for Abu Dhabi Climate

    K. Bououni1, T. Jaber1, S. Elbehissy1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 127-141, 2017, DOI:10.3970/fdmp.2017.013.127

    Abstract The economic progress in the United Arab Emirates (UAE) induces to a significant increase in the demand for agricultural development. In Emirates the majority of the farms are irrigated by underground water, characterized by a high level of salinity. Liwa, Al Ain and Al Khatem areas are suffering from high water well salinity that exceeds 20,000 ppm. This work focuses on this problem and suggests a suitable solution allowing the use of renewable energy (Solar Photovoltaic) to drive RO desalination units. An optimal design of RO/PV unit adapted to a typical farm in Abu Dhabi More >

  • Open Access

    ARTICLE

    Analytical and Numerical Study of the Evaporation on Mixed Convection in aVertical Rectangular Cavity

    M. Ihdene1, T. Ben Malek2, S. Aberkane3, M. Mouderes4, P. Spiterri5, A. Ghezal2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 85-105, 2017, DOI:10.3970/fdmp.2017.013.085

    Abstract We consider an ascending laminar air flow in a vertical channel formed by two parallel flat plates wetted by a thin water film and under different temperature and concentration conditions. The study includes a numerical finite volume method for the treatment of the double diffusion problem, where the analytical solution is given to the thermal diffusion. The analytical study showed that the reversed flow is observed only under some wall temperature conditions and also for certain values of Re/Gr. The reversed flow is also strongly dependent on the aspect ratio A2, which is based on the… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall

    Mohamed Ammar Abbassi1, Bouchmel Mliki1, Ridha Djebali1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 59-83, 2017, DOI:10.3970/fdmp.2017.013.059

    Abstract This article reports a numerical study of nanoparticle Brownian motion and magnetic field effects by natural convection in a nanofluid-filled open cavity with non uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity and effective viscosity is considered and examined. Simulations have been carried out for the pertinent parameters in the following ranges: Rayleigh number (Ra=103−106), Hartmann number (Ha=0-60), nanoparticle volume concentration (Φ=0–0.04) and More >

Displaying 20791-20800 on page 2080 of 25939. Per Page