Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,363)
  • Open Access

    ARTICLE

    Analysis of Realistic Large MEMS Devices

    Per Ljung1, Martin Bächtold2, Mirko Spasojevic2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 21-30, 2000, DOI:10.3970/cmes.2000.001.021

    Abstract This paper presents AutoMEMS®, a numerical simulation environment to efficiently analyze the behavior of large real-world MEMS designs. By automating surface-based model generation, meshing and field solver tools, it is possible to rapidly model large complex MEMS devices. More >

  • Open Access

    ARTICLE

    Simulation of Anisotropic Crystalline Etching using a Continuous Cellular Automata Algorithm

    Zhenjun Zhu, Chang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 11-20, 2000, DOI:10.3970/cmes.2000.001.011

    Abstract We present results on the development of an anisotropic crystalline etching simulation (ACES) program based on a new continuous Cellular Automata (CA) model, which provides improved spatial resolution and accuracy compared with the conventional and the stochastic CA \mbox{methods}. Implementation of a dynamic CA technique provides increased simulation speed and reduced memory requirement (5x). A first ACES software based on common personal computer platforms has been realized. Simulated results of etching match well with experiments. We have developed a new methodology to obtain the etch-rate diagram of anisotropic etching efficiently using both experimental and numerical More >

  • Open Access

    ARTICLE

    Modeling of the Electronic Properties of Vertical Quantum Dots by the Finite Element Method

    Philippe Matagne1, Jean-Pierre Leburton2, Jacques Destine, Guy Cantraine3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 1-10, 2000, DOI:10.3970/cmes.2000.001.001

    Abstract We investigate the quantum mechanical properties and single-electron charging effects in vertical semiconductor quantum dots by solving the Schrödinger and Poisson (SP) equations, self-consistently. We use the finite element method (FEM), specifically the Bubnov-Galerkin technique to discretize the SP equations. Owing to the cylindrical symmetry of the structure, the mesh is generated from hexahedral volume elements. The fine details of the electron spectrum and wavefunctions in the quantum dot are obtained as a function of macroscopic parameters such as the gate voltage, device geometry and doping level. The simulations provide comprehensive data for the analysis More >

Displaying 24361-24370 on page 2437 of 24363. Per Page