Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (416)
  • Open Access

    ARTICLE

    Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems

    Sang-min Lee, Namgi Kim*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046346

    Abstract Recommendation Information Systems (RIS) are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet. Graph Convolution Network (GCN) algorithms have been employed to implement the RIS efficiently. However, the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process. To address this issue, we propose a Weighted Forwarding method using the GCN (WF-GCN) algorithm. The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning. By applying the WF-GCN… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

  • Open Access

    ARTICLE

    Robust and Trustworthy Data Sharing Framework Leveraging On-Chain and Off-Chain Collaboration

    Jinyang Yu1,2, Xiao Zhang1,2,3,*, Jinjiang Wang1,2, Yuchen Zhang1,2, Yulong Shi1,2, Linxuan Su1,2, Leijie Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047340

    Abstract The proliferation of Internet of Things (IoT) systems has resulted in the generation of substantial data, presenting new challenges in reliable storage and trustworthy sharing. Conventional distributed storage systems are hindered by centralized management and lack traceability, while blockchain systems are limited by low capacity and high latency. To address these challenges, the present study investigates the reliable storage and trustworthy sharing of IoT data, and presents a novel system architecture that integrates on-chain and off-chain data manage systems. This architecture, integrating blockchain and distributed storage technologies, provides high-capacity, high-performance, traceable, and verifiable data storage and access. The on-chain system,… More >

  • Open Access

    ARTICLE

    Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition

    Liya Yue1, Pei Hu2, Shu-Chuan Chu3, Jeng-Shyang Pan3,4,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.046962

    Abstract Speech emotion recognition (SER) uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions. The number of features acquired with acoustic analysis is extremely high, so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system. The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy. First, we use the information gain and Fisher Score to sort the features extracted from signals. Then, we employ a multi-objective ranking method to evaluate these features and… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has been formed by Enhanced Wolf… More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    S. Jayanthi*, S. Prasanna Devi

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.045975

    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate our system, we have rigorously… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    Yuecheng Yu1,*, Liming Cai1, Anqi Ning1, Jinlong Shi1, Xudong Chen2, Shixin Huang1

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.046125

    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the YOLOX branch needs to be… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Access Control Scheme for Reputation Value Attributes of the Internet of Things

    Hongliang Tian, Junyuan Tian*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047058

    Abstract The Internet of Things (IoT) access control mechanism may encounter security issues such as single point of failure and data tampering. To address these issues, a blockchain-based IoT reputation value attribute access control scheme is proposed. Firstly, writing the reputation value as an attribute into the access control policy, and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control; Secondly, storing a large amount of resources from the Internet of Things in Inter Planetary File System (IPFS) to improve system throughput; Finally, map resource access… More >

  • Open Access

    ARTICLE

    Leveraging Augmented Reality, Semantic-Segmentation, and VANETs for Enhanced Driver’s Safety Assistance

    Sitara Afzal1, Imran Ullah Khan1, Irfan Mehmood2, Jong Weon Lee1,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046707

    Abstract Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead. However, limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overtaking maneuvers, leading to accidents and fatalities. In this paper, we consider atrous convolution, a powerful tool for explicitly adjusting the field-of-view of a filter as well as controlling the resolution of feature responses generated by Deep Convolutional Neural Networks in the context of semantic image segmentation. This article explores the potential of seeing-through vehicles as a solution to enhance overtaking safety. See-through vehicles leverage… More >

Displaying 271-280 on page 28 of 416. Per Page