Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (438)
  • Open Access

    ARTICLE

    Enhanced Differentiable Architecture Search Based on Asymptotic Regularization

    Cong Jin1, Jinjie Huang1,2,*, Yuanjian Chen1, Yuqing Gong1

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.047489

    Abstract In differentiable search architecture search methods, a more efficient search space design can significantly improve the performance of the searched architecture, thus requiring people to carefully define the search space with different complexity according to various operations. Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search. With this in mind, we propose a faster and more efficient differentiable architecture search method, AllegroNAS. Firstly, we introduce a more efficient search space enriched by the introduction of two redefined convolution modules. Secondly, we utilize a more efficient architectural parameter regularization… More >

  • Open Access

    ARTICLE

    CVTD: A Robust Car-Mounted Video Text Detector

    Di Zhou1, Jianxun Zhang1,*, Chao Li2, Yifan Guo1, Bowen Li1

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.047236

    Abstract Text perception is crucial for understanding the semantics of outdoor scenes, making it a key requirement for building intelligent systems for driver assistance or autonomous driving. Text information in car-mounted videos can assist drivers in making decisions. However, Car-mounted video text images pose challenges such as complex backgrounds, small fonts, and the need for real-time detection. We proposed a robust Car-mounted Video Text Detector (CVTD). It is a lightweight text detection model based on ResNet18 for feature extraction, capable of detecting text in arbitrary shapes. Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation (CATA) and… More >

  • Open Access

    ARTICLE

    Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling

    Bayi Xu1, Lei Sun2,*, Xiuqing Mao2, Chengwei Liu3, Zhiyi Ding2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046478

    Abstract In recent years, frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security. This paper presents a novel intrusion detection system consisting of a data preprocessing stage and a deep learning model for accurately identifying network attacks. We have proposed four deep neural network models, which are constructed using architectures such as Convolutional Neural Networks (CNN), Bi-directional Long Short-Term Memory (BiLSTM), Bidirectional Gate Recurrent Unit (BiGRU), and Attention mechanism. These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models, we apply various preprocessing… More >

  • Open Access

    ARTICLE

    Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning

    Bowen Yu, Chunli Xie*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046248

    Abstract With the advent of Industry 4.0, marked by a surge in intelligent manufacturing, advanced sensors embedded in smart factories now enable extensive data collection on equipment operation. The analysis of such data is pivotal for ensuring production safety, a critical factor in monitoring the health status of manufacturing apparatus. Conventional defect detection techniques, typically limited to specific scenarios, often require manual feature extraction, leading to inefficiencies and limited versatility in the overall process. Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes. Our proposed approach encompasses a suite… More >

  • Open Access

    ARTICLE

    Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm

    Qinhui Liu, Laizheng Zhu, Zhijie Gao, Jilong Wang, Jiang Li*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046040

    Abstract To improve the productivity, the resource utilization and reduce the production cost of flexible job shops, this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching. Firstly, a mathematical model is established to minimize the maximum completion time. Secondly, an improved two-layer optimization algorithm is designed: the outer layer algorithm uses an improved PSO (Particle Swarm Optimization) to solve the workpiece batching problem, and the inner layer algorithm uses an improved GA (Genetic Algorithm) to solve the dual-resource scheduling problem. Then, a rescheduling method is designed to solve the… More >

  • Open Access

    ARTICLE

    Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection

    Chengsheng Yuan1,2, Baojie Cui1,2, Zhili Zhou3, Xinting Li4,*, Qingming Jonathan Wu5

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045854

    Abstract In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the blank area of… More >

  • Open Access

    ARTICLE

    Adaptive Segmentation for Unconstrained Iris Recognition

    Mustafa AlRifaee1, Sally Almanasra2,*, Adnan Hnaif3, Ahmad Althunibat3, Mohammad Abdallah3, Thamer Alrawashdeh3

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.043520

    Abstract In standard iris recognition systems, a cooperative imaging framework is employed that includes a light source with a near-infrared wavelength to reveal iris texture, look-and-stare constraints, and a close distance requirement to the capture device. When these conditions are relaxed, the system’s performance significantly deteriorates due to segmentation and feature extraction problems. Herein, a novel segmentation algorithm is proposed to correctly detect the pupil and limbus boundaries of iris images captured in unconstrained environments. First, the algorithm scans the whole iris image in the Hue Saturation Value (HSV) color space for local maxima to detect the sclera region. The image… More >

  • Open Access

    ARTICLE

    Efficient Object Segmentation and Recognition Using Multi-Layer Perceptron Networks

    Aysha Naseer1, Nouf Abdullah Almujally2, Saud S. Alotaibi3, Abdulwahab Alazeb4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.042963

    Abstract Object segmentation and recognition is an imperative area of computer vision and machine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features. The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks (ANNs). The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label them based on their characteristics. Then, two distinct kinds of features are obtained from the segmented images to help identify the objects… More >

  • Open Access

    ARTICLE

    A Fair and Trusted Trading Scheme for Medical Data Based on Smart Contracts

    Xiaohui Yang, Kun Zhang*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.047660

    Abstract Data is regarded as a valuable asset, and sharing data is a prerequisite for fully exploiting the value of data. However, the current medical data sharing scheme lacks a fair incentive mechanism, and the authenticity of data cannot be guaranteed, resulting in low enthusiasm of participants. A fair and trusted medical data trading scheme based on smart contracts is proposed, which aims to encourage participants to be honest and improve their enthusiasm for participation. The scheme uses zero-knowledge range proof for trusted verification, verifies the authenticity of the patient’s data and the specific attributes of the data before the transaction,… More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    Lanyao Zhang1, Shichao Kan2, Yigang Cen3, Xiaoling Chen1, Linna Zhang1,*, Yansen Huang4,5

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.046924

    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample features to these two spaces… More > Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

Displaying 311-320 on page 32 of 438. Per Page