Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (123)
  • Open Access

    ARTICLE

    Research on 48 V Super Capacitor Micro Hybrid System with 12 V Power Supply Multiplexing Function

    Wei Shi1, Shusheng Xiong1,*, Wei Li2, Bohao Zhang3

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.014643

    Abstract 48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present. However, with the irreversible internal resistance increase of the key component 48 V lithium battery, and the capacity continues to decline, the system performance deteriorate. Worst case could be the system not functional in the middle and later age of vehicle life cycle. This paper studies the feasibility of using 48 V super capacitor as the replacement to 48 V lithium battery, and uses a 12 V module of 48 V super capacitor as the traditional 12 V power supply,… More >

  • Open Access

    ARTICLE

    Prediction Model for Gas Outburst Intensity of Coal Mining Face Based on Improved PSO and LSSVM

    Haibo Liu1,*, Yujie Dong2, Fuzhong Wang1

    Energy Engineering, Vol., , DOI: 10.32604/EE.2021.014630

    Abstract For the problems of nonlinearity, uncertainty and low prediction accuracy in the gas outburst prediction of coal mining face, the least squares support vector machine (LSSVM) is proposed to establish the prediction model. Firstly, considering the inertia coefficients as global parameters lacks the ability to improve the solution for the traditional particle swarm optimization (PSO), an improved PSO (IPSO) algorithm is introduced to adjust different inertia weights in updating the particle swarm and solve the fitness to stagnate. Secondly, the penalty factor and kernel function parameter of LSSVM are searched automatically, and the regression accuracy and generalization performance is enhanced… More >

  • Open Access

    ARTICLE

    Experimental Research of the Radiator Thermal Performance Test Equipment and Its Application in Heating System

    Lian Zhang1,2,3,*, Linjun Fan4, Xin Xu5, Baowen Cao1, Heng Zhang2, Lihong Song3

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.012647

    Abstract Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products. The precise of temperature controlling, temperature measuring and flow measuring are the vital factors for a radiator thermal performance test equipment. Based on the above background, this paper improves the measurement and control system of radiator thermal performance test equipment, which improves the accuracy of the radiator thermal performance test equipment. This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment. The flow… More >

  • Open Access

    ARTICLE

    A Novel Polymorphic Topology with Hybrid Control Strategy Based LLC Resonant Converter for Ultra-Wide Input Voltage Range Applications

    Chi Zhang, Yong Shi*, Xuwei Gui

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.014229

    Abstract To realize effective utilization of renewable energy sources, a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper. By combining the merits of a full bridge LLC resonant converter, three-level half bridge LLC resonant converter, and variable frequency control mode, the converter realizes an intelligent estimation of input voltage by automatically changing its internal circuit topology. Under this control strategy, different input voltages determine different operation modes. This is achieved in full bridge LLC mode when the input voltage is low. If the input voltage rises to a certain level, it… More >

  • Open Access

    ARTICLE

    Impact of Greenization on the Marginal Utility of Intensity of Carbon Emissions and Factors Affecting it in China

    Yu Liu1, Ruiting Jiao1, Liyao Zhao1, Kai Liu1,2,*

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.013472

    Abstract The impact of greenization on the marginal utility of the intensity of carbon emissions in China and factors influencing this relationship are explored in this study. China’s level of greenization is evaluated by using an index system developed based on the comprehensive index method. The intensity of carbon emissions is determined by using the standards for the coefficients of conversion of coal equivalent and coefficients of carbon emission. The impact of greenization on the marginal utility of the intensity of carbon emissions is then evaluated by using an elastic formula and factors affecting this relationship are verified by regression analysis.… More >

  • Open Access

    ARTICLE

    Performance Assessment of Heat Exchangers for Process Heat Integration

    Fenwicks Shombe Musonye1,*, Hiram Ndiritu2, Robert Kinyua3

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.013890

    Abstract Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries. In this approach, maximum internally recoverable heat is determined and a heat exchange network is designed to meet the recovery targets. The thermal performance of a heat exchanger over its lifetime is however a concern to industries. Thermal performance of a heat exchanger is affected by many factors which include the physical properties of the shell and tube materials, and the chemical properties of the heat transfer fluid. In this study, thermal performance of shell and tube heat exchangers designed to meet heat recovery targets… More >

  • Open Access

    ARTICLE

    An Analysis of the Operation Mechanism of Chemical Industry Park Ecosystem Based on Theory of Ecological Organization

    Bilin Xu, Mei Han*

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.013384

    Abstract Based on the theory of ecological organization, this paper analyzes the operation mechanism of chemical industry park (CIP) ecosystem by means of dynamic simulation. The research shows that the CIP ecosystem is a complex ecological system whose operation mechanism includes two levels, namely individual enterprises and ecosystem. At the level of individual enterprise, there are competition, symbiosis, invasion and other interactions between enterprises in the CIP ecosystem. Through the pre-determined judgment of the competition effect coefficient and the symbiosis effect coefficient, we calculate how the enterprises influence each other, and then generate their respective operation paths, and finally realize the… More >

  • Open Access

    ARTICLE

    A Novel Single Switch High Gain DC-DC Converter Topology for Renewable Energy Systems

    G. Indira Kishore1, M. Premkumar1,*, Ramesh Kumar Tripathi2, Chandra Sekhar Nalamati2

    Energy Engineering, Vol., , DOI:10.32604/EE.2021.014079

    Abstract Renewable energy with sources such as photovoltaic (PV) or fuel cells can be utilized for the generation of electrical power. But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids. These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage. Switched capacitors operate in a series and parallel combination during switching operation and produce high static gain, limits reverse voltage that appears across the components. A novel converter is proposed that satisfies all the features such as high voltage gain, only one… More >

  • Open Access

    ARTICLE

    Design of Nonlinear Uncertainty Controller for Grid-Tied Solar Photovoltaic System Using Sliding Mode Control

    D. Menaga1, M. Premkumar2, R. Sowmya1,*, S. Narasimman3

    Energy Engineering, Vol., , DOI:10.32604/EE.2020.013282

    Abstract The proposed controller accompanies with different sliding surfaces. To understand maximum power point extraction as opposed to nonlinear uncertainties and unknown disturbance of a grid-connected photovoltaic system to various control inputs (ud, uq) is designed. To extract maximum power from a solar array and maintain unity power flow in a grid by controlling the voltage across the dclink capacitor (Vpvdc) and reactive current (iq). A multiple input-output with multiple uncertainty constraints have considered designing proposed sliding mode controllers to validated their robustness performance. An innovative controller verifies uncertain inputs, constant and changes in irradiances, and temperature of the photo-voltaic system.… More >

  • Open Access

    ARTICLE

    Research on Distribution Network Full Cost-Benefit Optimization Considering Different Renewable Energy Penetration

    Tanzhong Fu1,2,3, Yu Xue1,*, Tancai Xia1, Wang Jing1, De Gejirifu1

    Energy Engineering, Vol., , DOI:10.32604/EE.2020.011633

    Abstract To further study the impact of renewable energy penetration on the technical transformation of distribution networks. Based on the output power characteristics of wind power and photovoltaics, a renewable energy grid-connected capacity model and a distribution network full cost-benefit model were constructed. Based on this, to maximize the comprehensive income of the distribution network and the renewable energy penetration rate, to establish the technical reform optimization model and search for the optimal solution through the improved NSGA-II algorithm. Finally, the effectiveness of the proposed model was verified by setting up three scenarios of simultaneous wind power, grid-connected wind power, grid-connected… More >

Displaying 111-120 on page 12 of 123. Per Page