Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm

    Wei Li1,2, Benjian Zou1, Yuxiang Luo2, Ning Yang2, Faye Zhang1,*, Mingshun Jiang1, Lei Jia1

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2023.025989

    Abstract As a critical structure of aerospace equipment, aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system. In this study, a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft. Firstly, together with numerical simulation, the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed, to establish the damage data. Subsequently, the amplitude-frequency characteristics of impact damage signals are extracted and put into an extreme learning machine… More >

  • Open Access

    ARTICLE

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

    Guangfei Jia*, Fengwei Guo, Zhe Wu, Suxiao Cui, Jiajun Yang

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2023.026885

    Abstract With the development of multi-signal monitoring technology, the research on multiple signal analysis and processing has become a hot subject. Mechanical equipment often works under variable working conditions, and the acquired vibration signals are often non-stationary and nonlinear, which are difficult to be processed by traditional analysis methods. In order to solve the noise reduction problem of multiple signals under variable speed, a COT-DCS method combining the Computed Order Tracking (COT) based on Chirplet Path Pursuit (CPP) and Distributed Compressed Sensing (DCS) is proposed. Firstly, the instantaneous frequency (IF) is extracted by CPP, and the speed is obtained by fitting.… More >

  • Open Access

    ARTICLE

    An Overview of Seismic Risk Management for Italian Architectural Heritage

    Lucio Nobile*

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2023.028247

    Abstract The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people and goods (buildings, bridges, dams, slopes, etc.). Most of the Italian architectural heritage is vulnerable to earthquakes, identifying the vulnerability as the inherent predisposition of the masonry building to suffer damage and collapse during an earthquake. In fact, the structural concept prevailing in these ancient masonry buildings is aimed at ensuring prevalent resistance to vertical gravity loads. Rarely do these ancient masonry structures offer relevant resistance… More >

  • Open Access

    ARTICLE

    Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory

    Zhongguo Tang1, Haijin Zhuo1, Beian Li1, Xiaotao Ma2, Siyu Zhao2, Kai Tong2,*

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2023.026033

    Abstract Corrosion can be very harmful to the service life and several properties of reinforced concrete structures. The metal magnetic memory (MMM) method, as a newly developed spontaneous magnetic flux leakage (SMFL) non-destructive testing (NDT) technique, is considered a potentially viable method for detecting corrosion damage in reinforced concrete members. To this end, in this paper, the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters, and the normal components BBz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory (MMM) method.… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Fracture Performance of Short Basalt Fiber Bundle Reinforced Concrete

    Jinggan Shao1,2, Jiao Ma1, Renlong Liu1, Ye Liu3, Pu Zhang1,*, Yi Tang4, Yunjun Huang2

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2022.015097

    Abstract In this paper, a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete (SBFBRC). To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete, some groups are set up, and the P-CMOD curves of each group of specimens are measured, and the fracture toughness and fracture energy of each control group are calculated. The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of the new basalt fiber bundles… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Performance Characteristics of PZT-5A with Application to Fault Diagnosis

    Saqlain Abbas1,2, Zulkarnain Abbas3,4,*, Yanping Zhu2, Waqas Tariq Toor5, Xiaotong Tu6

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2022.015266

    Abstract In the previous couple of decades, techniques to reap energy and empower low voltage electronic devices have received outstanding attention. Most of the methods based on the piezoelectric effect to harvest the energy from ambient vibrations have been revolutionized. There’s an absence of experiment-based investigation which incorporates the microstructure analysis and crystal morphology of those energy harvest home materials. Moreover, the impact of variable mechanical and thermal load conditions has seldom been studied within the previous literature to utilize the effectiveness of those materials in several practical applications like structural health monitoring (SHM), etc. In the proposed research work, scanning… More >

  • Open Access

    ARTICLE

    Dynamic Risk-Warning of Center Diaphragm and Bench Composite Method During Construction

    Xiaozhong Li*, Caiyun Sun

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2022.013141

    Abstract During the construction of subway tunnels, safety issues should not be ignored, so it is necessary to prevent and resolve the risk in time and accurately. However, there are some shortcomings in the research of risk assessment, such as the subjectivity of initial data or the lack of scientific evaluation model, in order to solve the problem, this paper relies on the Changping section of the Guanhui Intercity Metro, in order to establish a dynamic risk-warning model for the construction process of subway tunnel with the CD-Bench composite method. First, a monitoring plan was equationted according to the specification requirements… More >

  • Open Access

    ARTICLE

    Research on Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm

    Kelong Huang, Jie Yan, Lei Zhang*, Faye Zhang, Mingshun Jiang, Qingmei Sui

    Structural Durability & Health Monitoring, Vol., , DOI: 10.32604/sdhm.2022.018202

    Abstract A structural displacement field reconstruction method is proposed to aim at the problems of deformation monitoring and displacement field reconstruction of flexible plate-like structures in the aerospace field. This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network. This paper first introduces the principle of strain detection of fiber grating sensor, studies the mapping relationship between strain and displacement, and proposes a strain-displacement conversion model based on an improved neural network. Then the intelligent structure deformation monitoring system is built. By controlling the stepping distance of the motor to produce different… More >

  • Open Access

    ARTICLE

    Health Monitoring-Based Assessment of Reinforcement with Prestressed Steel Strand for Cable-Stayed Bridge

    Kexin Zhang*, Tianyu Qi, Dachao Li, Xingwei Xue, Yanfeng Li

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2021.016130

    Abstract This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands. To verify the effectiveness of external prestressed strand reinforcement method. Static load tests and health monitoring-based assessment were carried out before and after reinforcement. Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20% after reinforcement, and the flexural strength and stiffness of the strengthened beam are improved. The deflection and strain data of health monitoring of the specified section are collected. The deflection of the second span is 4 mm~10 mm, the strain… More >

Displaying 21-30 on page 3 of 29. Per Page