Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (414)
  • Open Access

    ARTICLE

    Novel Magnetically Interconnected Micro/Macroporous Structure of Monolithic Porous Carbon Adsorbent Derived from Sodium Alginate and Wasted Black Liquor and Its Adsorption Performance**

    Parichart Onsri1, Decha Dechtrirat2,3,4, Patcharakamon Nooeaid5, Apiluck Eiad-ua6, Pongsaton Amornpitoksuk1,7, Supanna Techasakul4, Ahmad Taufiq8, Laemthong Chuenchom1,7,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.013362

    Abstract The novel and facile preparation of magnetically interconnected micro/ macroporous structure of monolithic porous carbon adsorbent (MPCA) were designed and presented herein. The synthesis was achieved via conventional freeze-drying and pyrolysis processes. In this study, sodium alginate and wasted black liquor were employed as starting precursors. Sodium alginate acts as a template of materials, whereas black liquor, the wasted product from the paper industry with plentiful of lignin content and alkaline solution, played an essential role in the reinforcement and activation of porosity for the resulting materials. Moreover, both the precursors were well dissolved in Fe3+ solution, providing a simple… More >

  • Open Access

    ARTICLE

    Study on the Treatment of Acid Mine Drainage Containing Fe2+ and Mn2+ Using Modified Spontaneous Combustion Gangue

    Xuying Guo1,2,*, Saiou Fu1, Junzhen Di3, Yanrong Dong3, Guoliang Jiang3

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012335

    Abstract The high concentrations of Fe2+ and Mn2+ in acid mine drainage make it difficult and expensive to treat. It is urgent that we find a cheap and efficient adsorption material to treat Fe2+ and Mn2+. As a solid waste in mining areas, coal gangue occupies a large area and pollutes the surrounding environment during the stacking process. Developing a method of resource utilization is thus a research hotspot. In this study, we modified spontaneous combustion gangue using NaOH, NaCl, and HCl by chemically modifying the minerals. We determined the optimal conditions for treating Fe2+ and Mn2+ in acid mine drainage… More >

  • Open Access

    ARTICLE

    Prediction and Analysis of Post-Treatment of Sustainable Walnut Shell/Co-PES Parts by Laser Sintering

    Yueqiang Yu1, Suling Wang1,*, Minzheng Jiang1, Yanling Guo2,3, Ting Jiang1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012885

    Abstract In order to enhance the strength of sustainable walnut shell/Co-PES (WSPC) sintered parts, wax-filtrated post-treatment was carried out. The effects of treating fluid temperature, preheating time and immersion time on the bending strength of WSPC wax-filtrated parts were analyzed by single factor analysis method. To obtain an accurate model for predicting the bending strength of the WSPC wax-filtrated part, the experiments were involved by using Box-Behnken design (BBD). Main parameters, such as treating fluid temperature, preheating time and immersion time, and their interactive effects were analyzed through analysis of variance (ANOVA) and graphical contours. The results demonstrated that all parameters’… More >

  • Open Access

    ARTICLE

    Improving the Properties of Fast-Growing Chinese Fir by Vacuum Hot Pressing Treatment

    Lu Hong1, Biqing Shu1,2, Qian He1, Zehui Ju1, Haiyang Zhang1, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.013833

    Abstract Chinese fir was compressed by vacuum hot pressing and conventional hot pressing at different temperatures (180°C, 200°C and 220°C), respectively. The color parameters of the heat-compressed sample were measured, the relative mechanical properties of the material were tested and changes in the chemistry of fir were investigated using Fourier transform infrared spectroscopy (FTIR) and Xray photoelectron spectroscopy (XPS). The results indicated that the color difference between compressed and untreated wood increased gradually with the increase of temperature. Compared with the conventional hot pressing treatment, the color difference (ΔE*) of the Chinese fir treated by vacuum hot pressing decreased by 43.73%,… More >

  • Open Access

    ARTICLE

    Performance of Unidirectional Biocomposite Developed with Piptadeniastrum Africanum Tannin Resin and Urena Lobata Fibers as Reinforcement

    Achille Gnassiri Wedaïna1,2, Antonio Pizzi2, Wolfgang Nzie1, Raidandi Danwe3, Noel Konaï4,*, Siham Amirou2, Cesar Segovia5, Raphaël Kueny5

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012782

    Abstract The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF, ATR-FT MIR. It was used in the development of a resin with Vachellia nilotica extract as a biohardener. This tannin is consisting of Catechin, Quercetin, Chalcone, Gallocatechin, Epigallocatechin gallate, Epicatechin gallate. The gel time of the resin at natural pH (pH = 5.4) is 660 s and its MOE obtained by thermomechanical analysis is 3909 MPa. The tenacity of Urena lobata fibers were tested, woven into unidirectional mats (UD), and used as reinforcement in the development of biocomposite. The fibers tenacity at 20, 30 and 50 mm lengths are… More >

  • Open Access

    ARTICLE

    Synthesis of Green Adhesive with Tannin Extracted from Eucalyptus Bark for Potential Use in Wood Composites

    Medjda Amari1, Kamel Khimeche1,*, Abdelkader Hima2 , Redouane Chebout3, Abderahmane Mezroua1

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.013680

    Abstract Recently, the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast, as well as their richness in biomolecules such as polyphenols. In this way, many research studies tannins extracted from different sources such as mimosa, quebracho, and pine have been the subject of very satisfactory recent studies. In this paper, a new complete characterization of the tannins extracted from the bark of eucalyptus globulus harvested from two regions in Algeria was achieved. The structural characterization enabled us to confirm the richness in condensed tannins, particularly in procyanidin and prodelphinidin units.… More >

  • Open Access

    ARTICLE

    Melt Extrusion of Environmentally Friendly Poly(L-lactic acid)/Sodium Metabisulfite Films for Antimicrobial Packaging Applications

    Norma M. P. Machado1, Gustavo C. Melo1, Matheus F. Camargo1, Giulianna G. Feijó1, Bruna M. S. Putton2, Clarice Steffens2, Rogerio L. Cansian2, Luiz A. Pessan1, Francys K. V. Moreira1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.011081

    Abstract Food packaging materials compounded with antimicrobial additives can substantially diminish the incidence of foodborne diseases. Here, poly(L-lactic acid) (PLA) films containing sodium metabisulfite (NaM) were produced by melt extrusion as an attempt to develop a new biodegradable material with antimicrobial properties for packaging. Life cycle assessment (LCA) simulations revealed that the environmental footprints of the PLA film did not change upon NaM addition, and that NaM is more eco-friendly than silver nanoparticles. The PLA/NaM films with NaM content varying from 0.5 to 5.0 wt.% were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical and mechanical properties determinations.… More >

  • Open Access

    ARTICLE

    Investigation of Heterogeneous Ice Nucleation on the Micro-Cubic Structure Superhydrophobic Surface for Enhancing Icing-Delay Performance

    Senyun Liu1,2, Qinglin Liu1,2, Xian Yi1,2,*, Yizhou Shen4,*, Long Guo1,2, Wenqing Hou4, Haifeng Chen3, Zhen Wang4

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.014158

    Abstract The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective. To this end, we firstly constructed a group of micro-cubic array structures on silicon substrates by a selective plasma etching technique. After grafting low-free-energy substance, the as-constructed micro-cubic array structure surfaces exhibited higher non-wettability with the water contact angle being up to 150°. On this basis, 500 cycles of freezing and melting processes were accurately recorded to analyze the instantaneous ice nucleation behavior according to the statistical results of freezing temperature. As a consequence, the statistical… More >

  • Open Access

    ARTICLE

    A Promising Wound Dressing from Regenerated Silk Fibroin Sponge with Sustain-ed Release of Silver Nanoparticles

    Yang Li#, Xiaoying Zha#, Xingliang Xiong, Yan Zhang, Ying Feng, Haojiang Xie, Linqing Zhang, Qifeng Jiang*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012271

    Abstract A silk fibroin (SF) spongy wound dressing incorporated with silver nanoparticles (Ag-NPs) was developed for biomedical applications. Ag-NPs were efficiently synthesized in situ via ultra violet (UV) with AgNO3 as precursor and silk fibroin as reducing and protecting agent, respectively. After lyophilization, the formed silk fibroin spongy wound dressing (SFWD) exhibited polyporous morphology and inner lamellae structures, with uniform dispersion of Ag-NPs. The porous structure provided SFWD with the ability to absorb tissue exudatealmost 6 times of its own weight, which could guarantee the sustained release of Ag-NPs. By methanol treatment, SFWD showed much improved mechanical properties and more stable… More >

  • Open Access

    ARTICLE

    Development of a Soil Stabilizer for Road Subgrade Based on Original Phosphogypsum

    Zenghuan Gu1, Aiguo Fang2, Sudong Hua1,*, Qingzhou Zhao2, Lidong Sun2, Fan Xia2, Liying Qian3, Xiaojian Ren3

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.011912

    Abstract The research used industrial by-products original phosphogypsum (PG) as the main raw material, slag (SG) and Portland cement (PC) as auxiliary materials, and the optimal additive amount was determined according to the compressive strength value of the sample. Comprehensively evaluate the water resistance and volume stability of the samples, and determine the best formula for new roadbed stabilized materials. The results showed that when the weight ratio of PG, slag and cement was OPG:SG:PC = 6:3:1, and mixed with 5% micro silica fume (MSF) and 3‰ hydroxypropyl methyl cellulose (HPMC), the sample’s comprehensive performance was the best, specifically, the sample’s… More >

Displaying 391-400 on page 40 of 414. Per Page