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ABSTRACT

The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart
analytics, and increased automation. However, it also exposes connected devices, users, applications, and data
generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs),
which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging
methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques.
Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which L1 regularisation
and Random Forest were used to cluster features and analyse the importance and impact of each feature in both
individual threats and HCTs. A grey relation analysis-based model was employed to construct the correlation
between IIoT components and different threats.
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1 Introduction

The Internet of Things (IoT) refers to a network of interconnected objects using wired and wireless
communication schemes [1]. The Industrial Internet of Things (IIoT) is a paradigm of IoT application
in industry. It combines emerging technologies such as 5G, big data, cloud computing, and Artificial
Intelligence (AI), enabling industrial devices, control systems, and other production components to
exchange and analyse massive amounts of data. The information-driven IIoT promotes the digitisation
and automation of industries, significantly boosting the efficiency and economy of production. It
has been increasingly adopted by all industrial sectors, especially manufacturing, healthcare, and
transportation [2]. While the IIoT considerably contributes to industrial production, it raises a number
of challenges in terms of cyber security concerns [3].

Heterogeneity and interconnectivity are critical features in an IIoT system that enable different
components to communicate with each other effectively. However, the attack surfaces are broadened,
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and the security capabilities of heterogeneous hardware and software in an IIoT system have assorted
levels. Attackers may utilise vulnerable objects to control IIoT devices and launch further malicious
activities. For instance, the Mirai botnet was constructed by exploiting firmware vulnerabilities. It
was used to conduct large-scale Distributed Danial of Service (DDoS) attacks [4]. Insecure network
protocols could lead to lethal ramifications. For example, attackers could use Modbus to gain
unauthorized access [5]. Furthermore, different industrial scenarios may have various resources and
security requirements. Existing authentication, access control, and other security measures may be
unsatisfactory in IIoT environment due to constrained resources [6–8], which makes IIoT system
protection more challenging against evolving threats.

Besides the challenges introduced by IIoT, current adversaries tend to be more skilled, increasing
the landscape of cyber threats [9]. Attackers increasingly combine different attack vectors and
techniques, such as social engineering, malware, network intrusion, and Denial of Service (DoS) attacks,
to compromise targets and achieve their goals [9]. Furthermore, experienced hackers usually develop
various strategies which involve multiple stages to evade detection. For instance, a series of designed
stealth attacks can serve as the basis for further malicious activities. Low-aggressive attacks may
bypass conventional IDS, thus obscuring the complete attack path and raising the complexity of
investigation and forensics [10]. Especially within the IIoT environment, interconnected components
could be scaffolding for attackers, enabling more covert and versatile attack chains. HCTs arise from
this intricate circumstance, which requires a more comprehensive approach to defend IIoT systems.

AI-enabled methods have shown a promising capability for data analysis, and they offer an
avenue for studies to explore IIoT security solutions from various perspectives. A sheer of AI-
based threat detection and attack analysis methods have been proposed to secure IIoT systems
and achieved impressive performance, such as email filtering, code analysis, vulnerability scanning,
intrusion detection, and attack path analysis. However, novel attack detection, false alarm mitigation
and persuasive security incident correlation are still challenging tasks [4]. To adapt threat detection
for complicated circumstances of HCTs in IIoT, combining multiple security countermeasures from
both technical and temporal dimensions could be essential. The technical dimension refers to different
cybersecurity measures, such as Intrusion Detection Systems (IDSs), threat intelligence, attack path
modelling and alert correlation analysis. The temporal dimension refers to the related stages of these
different security measures. This survey reviews the application of AI methods in various security
schemes and discusses their combination scheme by constructing a technical framework. Section 2
reviews surveys related to IIoT security. Section 3 briefly introduced the IIoT structure, security
requirements and HCTs. Section 4 investigates the widely used AI methods in threat detection.
Section 5 discusses the AI-based schemes, which could be employed to assemble multiple methods
to analyse HCTs. The HCT detection framework is discussed in this section. Section 6 presents the
conclusion and gives several challenges and potential future works in IIoT HCT detection.

This survey aims to investigate AI-enabled security schemes and their practical solutions for IIoT.
This paper also introduces a technical framework for HCT detection, which can be a reference for
future research. The main contributions are summarised as:

1) This work proposed an HCT analysis framework in the IIoT context by combining the
characteristics of IIoT systems to address emerging HCTs.

2) Recent advances in AI-based security methods and their application in IIoT are reviewed in
this paper.
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3) Threat modelling methods, L1 regularisation, random forest (RF), and grey relational analysis
(GRA) are introduced in detail and integrated with promising technologies to construct a framework
for HCT detection.

4) Challenges and research trends of HCT analysis in IIoT were discussed in this paper.

2 Related Works

Many surveys have discussed IIoT security issues from the viewpoint of system structure.
Xu et al. [11] proposed a panoramic view of IIoT, in which the service-oriented architecture (SOA)
and critical embedding technologies, application sectors and common issues of IIoT were introduced.
Dhirani et al. [12] reviewed general security standards and communication protocols of IoT in industry,
and current challenges were presented. There is also a sheer of surveys concentrated on security issues
in IoT. Jayalaxmi et al. [13] gave an overview of the security framework studies while Panchal et al. [14],
and Tsiknas et al. [3] analysed various threats and countermeasures in detail from the perspective of
different layers.

Some other surveys discussed IIoT security from a view of threats. Gao et al. [15] discussed the
difference between IoT and IIoT, provided an extensive investigation into cyber security from the CIA
triad perspective and refined the security requirement and challenges in the IIoT context. Moreover,
this work introduced the potential applications of fog computing in IIoT security. Shah et al. [16]
gave a taxonomy of the IIoT device based on usage scenarios and listed potential security issues and
requirements according to the category of devices. The authors discussed countermeasures of several
common attacks as well. Similarly, Sengupta et al. [17] analysed specific threats of different IIoT com-
ponents and provided some case studies in real scenarios. Furthermore, this survey comprehensively
investigated blockchain applications on IIoT security. Makhdoom et al. [18] thoroughly investigated
IoT threats and proposed a security framework for IoT.

Some surveys focus on specific security problems in IIoT. Jiang et al. [19] discussed the application
of differential privacy for IIoT in detail. They claimed that the extensive utilization of big data
technology in IIoT may introduce new challenges to privacy protection. Vishwakarma et al. [20]
conducted an exhaustive investigation on DDoS attacks and countermeasures in IoT networks.
Kim et al. [21] emphasized the insider threat of IoT in their survey, in which they conducted a
comprehensive investigation on internal attacks and internal threat mitigation solutions.

Rakas et al. [22] focused on the security issues in supervisory control and data acquisition systems
and network-based IDS. Knowles et al. [23] discussed the Industrial Control System (ICS) security
standard and management solutions. Al-Mhiqani et al. [24] proposed a taxonomy of threats in IIoT,
which categorizes threats from four perspectives, i.e., attack method, impact, intention and event type.
Yaacoub et al. [25] highlighted the security issues of cyber-physical systems.

There is some research discussing IoT or IIoT security from a methodology perspective. Al-
Garadi et al. [4] studied the ML and Deep Learning (DL) based security solutions for IoT. Similarly,
Hussain et al. [1] systematically investigated general IoT issues and ML-based mitigation schemes.
Tatam et al. [26] investigated the threat modelling methods for sophisticated attacks. Navarro et al. [27]
and Kotenko et al. [28] focused on the correlation analysis approaches, given a comprehensive survey
on multi-step attack detection methods.

While there are plenty of surveys in the IIoT threat detection area, they often provide summaries
of various methods corresponding to the different problems with the IIoT environment, lacking
an integrative perspective. Compared to other surveys, this survey identified the IIoT security



4 CMES, 2024

requirements and HCTs characteristics. AI-based methods and their application in IIoT security have
been investigated. In addition, a technical framework is proposed to converge various methodological
dimensions onto the main issue, namely, HCT detection in IIoT.

3 IIoT and HCTs

An IIoT system usually involves a large number of heterogeneous and interconnected objects
that collect, process, and transmit sensitive data. It could be divided into different layers according
to diverse functions and technologies of its components, including perception layer, network layer, and
application layer. Attackers can exploit vulnerabilities in one or more of these devices to gain unau-
thorized access to sensitive data, compromise system integrity, and damage critical infrastructure [29].

An IIoT system may have different layers according to the diverse function of components, includ-
ing perception layer, network layer, and application layer, which highlight the technical features of IIoT,
e.g., the extensibility, interoperability and robustness [11]. Perception Layer. The perception layer is a
crucial component of IIoT systems directly associated with the production site, encompassing various
sensors for collecting environmental data. The perception layer typically also includes actuators, such
as LEDs and buzzers that can be used to indicate equipment status, and mechatronic devices that can
execute linear, rotational, or even more complex movements [30]. Network Layer. In IIoT systems,
numerous heterogeneous devices and various application software are interconnected through the
network layer, which plays a crucial role in IIoT systems [31]. In recent years, with the development of
wireless communication technology, wireless devices have received increasing attention, and low-power
wireless communication protocols have gradually become popular in IIoT, such as Bluetooth, LPWAN,
ZigBee, etc. Processing Layer. The processing layer is also called middle-ware layer in some literature,
which primarily consists of services and applications designed to provide an efficient collaborative
platform for complex IIoT components. One of its significant functions is to provide communication
standards, such as APIs and protocols, allowing heterogeneous devices and software to exchange data
seamlessly [4,11]. Therefore, access management for service objects should be considered at this layer.
Application Layer. The application layer generally faces the user directly, and the solutions differ based
on industry and even the business sector. This layer typically includes a large number of sensor logs,
machine operation data and business process information [32]. Since the carrier of the application
layer is often a conventional computing device, the security challenges faced could be more complex.

3.1 Security Requirements in IIoT
The diversity of IIoT components brings a complicated context for cyber security [33], which

consists of various devices, firmware, communication protocols, control software, and various software
interfaces together with expended attack surfaces [34]. The single vulnerable object may expose the
system to cyber hybrid threats such as Man in the middle, DoS, malicious code injection, etc. Because
of the interconnected nature of IIoT, once an attacker successfully accesses from an inevitable attack
surface, it could be liable to move horizontally in the network to expand the attack range and even
obtain advanced privileges. In addition, there are usually some constraints in the IIoT environment,
for example, device energy consumption, low-latency communication, and data privacy. Moreover,
with the development of edge computing and blockchain technology, decentralization has become a
future trend, which will inevitably increase the complexity of IIoT security circumstances.

A security requirement model may prove advantageous in issue analysis and strategy design. For
example, the CIA triad is an extensively used threat modelling method which defines the fundamental
elements of information security: confidentiality, integrity and availability. Satisfying confidentiality
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means preventing data from unauthorized access and disclosure. Integrity emphasizes authenticity
and non-repudiation of information. Availability is an attribute that evaluates the timeliness and
availability of data. However, when discussing security in the context of IIoT environments, it is
customary to meticulously consider security requirements, which are precisely described as follows:

Availability: It refers to the ability of a system or application to remain operational and accessible
to authorized users at all times. For example, DoS attacks are common means of compromising system
availability [20]. Since the IIoT system usually contains resource-constrained components, it could be
more vulnerable to this attack [35]. As downtime or disruption to services may cause numerous risks
for IIoT, such as production delays, safety hazards, and financial losses, availability could be a vital
property of the IIoT system.

Authentication: It could be a critical process of verifying the identity of a user, device, or software
attempting to access an IIoT system or network. In an industrial setting, it is necessary to consider
data security and ensure Quality of Service (QoS). For instance, low latency and limited computing
resources [36]. Furthermore, the mobility, scalability and heterogeneity of IIoT objects make it more
challenging to recognise suspicious devices [37]. It has been demonstrated that malicious devices could
impose serious consequences, and a robust authentication mechanism should be established for the
IIoT system.

Confidentiality: Data-driven could be one of the major characteristics of the IIoT system. A
vast amount of data will be produced and transmitted between the IIoT devices and software [29].
Extremely sensitive information such as access key, commercial data, and device status may be included
in different processes, and compromised confidentiality may neutralize access control and lead to
severe ramifications.

Integrity: It is one of the critical pillars of IIoT security. Integrity ensures that data transmitted
between IIoT devices and software remains unaltered. Compromised data may result in process
failures, system shutdowns, and even security issues. Thus, reliable strategies should be introduced
to discern unexpected modifications in the IIoT system.

Non-Repudiation: It guarantees a secure and dependable transmission of information by fur-
nishing the intended recipient with proof of delivery and verifying the identity of the sender to the
data source. Non-repudiation is not typically considered a crucial security feature for IIoT systems.
Nevertheless, in specific contexts, such as payment systems, it plays a critical role in ensuring that both
parties involved in a transaction cannot later deny their involvement in the payment [4].

3.2 HCTs in IIoT
Hybrid threats were originally coined to refer to adversarial activities that pose a national threat

by employing various methods [38]. In the context of cyber security, the IIoT is encountering hybrid
threats to a certain extent. Plenty of research efforts have claimed that industrial targets are increasingly
attracting hackers, as summarised in Table 1. Attack surfaces in IIoT could be exploited by attackers
as entry points to infiltrate the network using hybrid methods to achieve their ultimate goal [37,39,40],
such as stealing data, hijacking, or destroying industrial facilities. Makhdoom et al. [18] indicated
that 70% of devices accessing the internet are prone to various attacks. Navarro et al. [27] discussed
multi-step and single attacks and noted that single-step attack, such as a DoS attack, should not be
confounded with a multi-step attack because there are usually no associated actions subsequent to the
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launch of the former. HCTs could be more applicable to describe the emerging sophisticated threats
in IIoT.

Table 1: Cyber hybrid threats/attacks in IIoT

Phases Cyber hybrid threats Associated layers Security property

Reconnaissance 1) Generic Scanning, the initial step
of attack that listens to the ports to
collect information such as the
Operation system, available services,
and software version, etc.;
2) Vulnerability Scanning, using
automated tools to detect
vulnerabilities according to
discovered information and
Common Vulnerabilities and
Exposures (CVE);
3) Fuzzing, which refers to injecting
a payload into target software to
discover potential useful
information by analyzing the
response messages;
4) Discovering Resources, which
could be conducted when
misconfigurations exist in the target
machine, e.g., unrestricted file
download and remote code execution.

Perception layer
Network layer
Processing layer
Application layer

Authentication
Confidentiality

Weaponization 1) Brute-force Attack, which refers
to the enumerating of simple user
names and passwords to gain
unauthorized access;
2) Dictionary-attack, which aims to
crack the target authentication
mechanism using a dictionary which
may contain real accounts and
passwords;
3) Malicious insiders, which could
be any employee who is disgruntled
or defrauded by social engineering
attacks who usually have access to
the facility, which means that they
can conduct malicious activity
stealthily and easily evade abnormal
detection.

Perception layer
Processing layer
Application layer

Authentication
Confidentiality

(Continued)
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Table 1 (continued)

Phases Cyber hybrid threats Associated layers Security property

Exploitation 1) Reverse shell, which is a
technology that allows the target
host to connect to and receive
commands from the adversarial
machine;
2) Man in the middle attack, an
attacker may establish a fraud node
between two interconnected devices
to intercept their communication.

Perception layer
Network layer
Processing layer
Application layer

Authentication
Confidentiality
Integrity

Lateral movement Attacks aim to find more critical
information about the target IIoT
system to expand threat scales. It
usually utilises communication
protocol vulnerabilities such as
MQTT, Modbus and TCP.

Network layer Authentication

Command &
control

This step could be important for
APTs to take control of the target
system.

Perception layer
Application layer

Authentication
Confidentiality

Exfiltration It refers to abnormal data extraction
activities conducted by attackers.

Processing layer
Application layer

Authentication
Confidentiality
Integrity

Tampering Attackers may compromise system
configuration, event logs and other
sensitive data to conceal their
activities.

Perception layer
Processing layer
Application layer

Integrity

DoS DoS is a broad concept and one of
the most prevalent forms of cyber
attack. This kind of attack is usually
conducted by overloading the target
machine or software to disable
normal access to the service.
Ransomware could be considered a
kind of DoS attack to some extent.

Application layer Availability
Confidentiality

One typical example of HCT is APT, which is usually carried out by adequately financed hacker
teams employed by consortium establishments or governing bodies that aim to obtain vital intelligence
of their target or to damage the infrastructures of adversaries [41]. In [20], Vishwakarma et al. claimed
that DDoS attack has begun to attempt to achieve their goal by amalgamating multiple layers of
attacks. Ma et al. [42] proposed a stealthy attack method which is based on the vulnerability of
redundant controllers in industrial CPS.
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Al-Hawawreh et al. [43] proposed a comprehensive dataset which includes various data sources,
scenarios, and hybrid attack methods in the IIoT context. The author defined a taxonomy of attacks
according to the target of certain malicious activities. Typical HCTs faced by IIoT systems include:
(1) Botnets. Botnets are networks of infected devices that can be controlled by attackers to carry out a
range of malicious activities, including distributed denial-of-service (DDoS) attacks, spamming, and
data theft. IoT devices are particularly vulnerable to botnet attacks, as they often have limited security
features and are connected to the internet. (2) Malware. Malware is a common threat to IoT systems, as
it can be used to compromise device security, steal sensitive data, or carry out other malicious activities.
Malware can be introduced through a variety of vectors, including phishing emails, infected websites,
and vulnerabilities in device firmware. (3) Physical attacks. IoT devices can be physically vulnerable
to attacks, such as tampering, theft, or destruction. Physical attacks can compromise the security and
privacy of the data being processed by the device and can cause disruptions to critical infrastructure.
(4) Insider threats. Insider threats involve individuals with authorized access to IoT devices or systems
using that access to carry out malicious activities, such as stealing sensitive data or introducing
malware. Insider threats can be particularly difficult to detect and prevent, as the individuals involved
often have legitimate access to the system. (5) Social engineering. Social engineering attacks involve
attackers using psychological manipulation to trick users into revealing sensitive information or
performing actions that compromise system security. Social engineering attacks can be used to gain
unauthorized access to IoT devices or systems or to trick users into downloading malware or giving
away sensitive information.

Miller et al. [44] provide a review of cyber attacks against ICS over several decades. It has
been pointed out that threat actors have become increasingly organized and large-scale in recent
years. Social engineering, such as phishing, has become a primary means of initiating attacks to
gain unauthorized access to victim systems. Subsequent actions mainly rely on exploiting existing
vulnerabilities. To address these HCTs, ICS systems require various security measures, including strong
encryption and authentication mechanisms, regular updates and patches, and appropriate access
controls.

4 Machine Learning Algorithms for HCTs Detection

Machine learning (ML) is a data-driven technology that allows computers to train mathematical
models with immense data to learn from previous information to resolve specific tasks [45]. According
to the given task and training approach, ML algorithms could be divided into three types: supervised,
unsupervised, and reinforcement learning [46]. Supervised learning refers to building a mathematical
model to learn the correspondence between given features and labels of training examples to predict
the output of new samples. In contrast, unsupervised learning algorithms do not have prior knowledge
of training data. Machine learning algorithms usually need to cluster samples in the dataset automati-
cally. Different from other algorithms, reinforcement learning (RL) achieves goals by interacting with a
virtual environment to formulate optimal policies, usually referring to a set of states and corresponding
actions. To formulate optimal policies, RL models use a trial and error strategy to maximize the reward
within the specified time step [47].

Deep learning (DL) is a subset of ML that has developed tremendously in the last decade [48]. DL
algorithms are generally structured as multiple-layer networks with a series of computing units, which
are more capable of automatically abstracting features from high dimensional data [47,49]. In shallow
ML, which is also mentioned as traditional ML, feature selection could be a sophisticated manual
step that needs professional knowledge to select highly correlated factors from a dataset and may
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significantly impact models’ performance. However, the advantage of deep learning depends on the
enormous scale of data. Shallow learning algorithms could still be competitive in some scenarios that
lack available data [4]. This section will briefly introduce common shallow and deep ML algorithms
and discuss their application in cyber security.

4.1 Shallow Learning
Shallow learning contains various supervised, unsupervised and reinforcement learning algorithms

that have been widely implemented in cyber threat detection in early research [50].

4.1.1 Supervised Algorithms

Decision tree (DT): It is a simple algorithm widely used for categorizing tasks. It uses flowcharts
with tree architecture to conduct decision analysis, which is intuitive and easy to implement. DT
generally contains root vertex, inner nodes and leaves. The decision process of a sample starts at the
root vertex representing its feature set. Then, the internal nodes assert the next branch according to
current feature values and finally route to a leaf node, which denotes a potential category [51]. Various
outstanding algorithms evolved from DT, e.g., the RF [52], Extra-trees (ET) [53], eXtreme Gradient
Boosting (XGB) [54] and Light Gradient Boosting Machine (LightGBM) [55].

Kasongo et al. [51] investigated several tree-based algorithms and proposed an IDS combined
RF with Genetic Algorithm (GA) for IIoT, in which GA was used to optimize the RF structure and
conduct feature engineering. Five models (i.e., LR, DT, ET, XGB, RF) were evaluated on the UNSW-
NB15 dataset. GA generated ten and seven groups of features separately for binary and multiclass
classification tasks. RF achieved the highest accuracy (i.e., 95.91% and 87% on average) for the binary
classification tasks in the validation and test sets. In comparison, ET models could be more competitive
for multi-categorization. Their average accuracy reached 82.74% and 76.76%.

Logistic regression (LR): LR is a statistical-based algorithm commonly used in various fields,
including cyber security. The LR model calculates the probability of the occurrence of a particular
result based on the given variables. The output is a value between 0 and 1, which is then converted
to a binary outcome using a threshold which can be adjusted to control the trade-off between the
accuracy and false positive rate. Besharati et al. [56] proposed a HIDS called LR-HIDS, which is
based on logistic regression to identify threats in cloud scenarios that are usually running in a virtual
environment.

Naive Bayesian (NB): NB is a kind of probabilistic model which is based on Bayes’ theorem. It has
been used for network intrusion detection in early research [57,58]. However, NB may fail to detect
the potential clue among features [4], and it takes less advantage than other methods in the big data
context [59]. In recent studies, it has been implemented as an assistant method. Gu et al. [60] proposed
an IDS framework using NB for feature embedding to improve the quality of a dataset and then using
SVM to recognize abnormal samples. They claimed that data quality could be a critical factor that
may considerably impact the performance of ML-based IDS models, while it was rarely considered
in existing studies. The result shows that SVM models trained on the fixed dataset achieved better
accuracy.

Support vector machine (SVM): SVM classifies samples by constructing a hyperplane within the
feature vector space. It performs effectively in both binary and multi-class scenarios while maintaining
a low level of computational complexity. It has been widely employed in cybersecurity area, such as
intrusion detection [61–63] and malware analysis [64,65].
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4.1.2 Unsupervised Algorithms

K-means: K-means is a simple unsupervised clustering algorithm based on Euclidean distance.
It is primarily utilized for classifying or grouping objects into K-distinct groups based on their
properties. K refers to an integer number that is required to be predetermined for the clustering
algorithm. Li et al. utilized K-means to detect Sybil attacks in industrial wireless sensor networks
[66]. Chang et al. proposed [67] a method using K-means and Autoencoder to identify anomalies for
industrial control system.

4.1.3 Reinforcement Learning

Q-Learning: Q-Learning is an RL algorithm that is model-free and able to learn by interaction
with the environment using an agent. It provides an optimum strategy for any finite Markov decision
process (FMDP) by maximising the anticipated amount of the entire reward across consecutive steps.
Given boundless exploring and a stochastic policy, Q-Learning can find the most effective route for any
FMDP. The working principle of Q-Learning is shown in Fig. 1, in which An denotes the nth Action, Sn

denotes the nth State, respectively. For action An in state Sn, there is a certain reward Rn, and the agent
will calculate and update the Q value Q(Sn, An) of each set of state and action in every step until the
iteration is completed. Xiao et al. proposed to use Q-Learning for access control in wireless networks
[48]. Li et al. proposed a method for DoS attack based on Q-Learning [68].

Figure 1: Q-Learning working principle

4.2 Deep Learning Algorithms
4.2.1 Supervised Algorithms

Convolutional neural network (CNN): CNN is developed to extract information from pixel matrix.
It is commonly used in computer vision. CNN usually consists of an input layer, several hidden layers,
and an output layer. The hidden layers of CNN contain at least one convolutional layer, and the
pooling layer and fully connected layer are also included in general. CNN can reduce raw sample
dimension and reserve key information through convolution operation, making it a powerful feature
extraction tool. Chawa et al. [69] proposed a host-based intrusion detection method which used CNN
to abstract the call sequence in a time window. Li et al. proposed [70] a fusion model using CNN to
detect network intrusion of IIoT.

Recurrent neural network (RNN): RNN is a kind of neural network that has the ability to remem-
ber short-term sequential information. Fig. 2 presents key processes. Gated recurrent unit (GRU) is a
commonly used RNN algorithm. RNN units learn the context information by considering the former
input vector. For given sequential data X = {x1, . . . , xn}, where xn is orderly samples, n refers to order
number. There will be two outputs for each iteration, Y = {y1, . . . , yn} and C = {c1, . . . , cn}, where yn

is the output of the model, cn is the saved information that will be forwarded to next calculation, the
subscript of GRU means the iteration times. RNN and its variants such as GRU and LSTM has been
successfully employed in network intrusion detection and exhibited favourable performance [71–73].
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Because RNN have the capability to analyze positional information of sequential data, some research
used it to identify acivities of advanced persistent threat [74,75].

Figure 2: RNN working principle

Transformer. Similar to RNN, transformer model is proposed to analyse sequential samples. It has
achieved remarkable success in natural language processing (NLP) problems. The transformer involves
several sets of encoders and decoders, and its key concept is attention mechanism. The attention
mechanism allows the model to analyse the contribution of a single sample in a given input sequence
for the current target output unit of decoders. Fig. 3 shows an example of transformer. Firstly, the
input vectors x1, x2, . . . , x6 were encoded to attach positional information. Then encoder extracted a
similarity matrix as output which records the context information of the input sequence.

Figure 3: Transformer working principle

The decoder received output from the encoder and generated y1 according to the context
information. Then y2 was generated using y1 and input context as input of the decoder and attached
after y1. Further steps are similar until the output sequence is generated completely. Because of its
powerful function to analyse long-term sequence data, it has been used to reveal the potential pattern
among network traffic. Ho et al. [76] converted network flow to image sequences and proposed a
transformer-based IDS which achieved 98.5% and 96.3% accuracy in binary classification on the
UNSW-15 and CICIDS2017 datasets.

4.2.2 Unsupervised

Autoencoder (AE). AE is a kind of neural network which can extract efficient representations from
raw data through an unsupervised training process to disregard noise information. As shown in Fig. 4,
AE consists of an encoder and a decoder, both components include a hidden layer. After training, it
can encode the input vector, and then attempt to decode and output the code. It is commonly used
for dimension reduction. Lopez-Martin et al. [77] applied AE to recover the missing information of
incomplete samples.
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Figure 4: Autoencoder

Generative adversarial network (GAN). GANs are generative models based on game theory. The
model consists of a generator and a discriminator. The generator is responsible for creating samples
according to a given initial vector, while the discriminator is previously trained to distinguish between
real and generated samples. The fundamental concept of its training process is to train the generator
under the supervision of a discriminator, which is also a neural network that can update itself. The
structure of GAN is shown in Fig. 5. Because of the nature of GAN model, it has been used to
generate samples, which is effective in protecting privacy in sensitive scenarios [78], and functional
for the problem of insufficient samples [79]. It could be a powerful method to improve the robustness
of ML models and has been used to mitigate poisoning attacks in machine learning [80,81].

Figure 5: GAN working principle

4.2.3 Reinforcement Learning

Deep Q network (DQN). Since Q-learning is not able to calculate the most optimized action when
states and actions are incredibly variable, DQN, a combination of Q-learning and DL, is developed to
solve this problem. The concept of DQN is that using a function F(Q(Sn, An), ω) to represent Q(Sn, An),
where a neural network will calculate ω. Sethi et al. [82] proposed a DQN-based NIDS as shown in
Fig. 6, in which network traffic features were abstracted to environment states, and attack types were
regarded as action.
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Figure 6: DQN working principle

5 HCT Modelling Schemes and Framework

Threat modelling could serve as a reference for threat detection and attack correlation to provide
explainability [28] and improve accuracy [27]. However, little research has considered the integration
of threat modelling and detection. This section investigated potential methods that could be used to
establish an HCT model that could be integrated with threat detection. An integrating framework is
proposed, and promising HCT detection methods are discussed according to the framework.

5.1 HCT Modelling
HCT modelling aims to provide the visibility of HCTs in IIoT by evaluating and abstracting the

characteristics and potential impact of threat vectors. Existing threat modelling can be categorized
into two types: manual modelling and mathematical modelling. The manual modelling schemes are
usually presented as graphs, data flows, or tables. The mathematical modelling approaches are based
on probability models, such as Markov chains and their variants [26]. However, the complexity
of IIoT systems limits the practical application of these modelling schemes [26]. To utilize an
HCT model in attack detection, two components could be involved: a threat model and a system
environment model [83]. The threat model aims to describe the features of each threat vector. The
system environment model refers to an abstraction of IIoT system status, such as software versions
and existing vulnerabilities.

5.1.1 RF-Based HCT Modelling

Machine learning techniques, such as Lasso regularisation [84] and RF [85], are able to remove
features with low variance and can be used in feature selection in HCT dependencies analysis. An HCT
is usually a combination of multiple individual threats. Using clustering-based regularisation along
with decision trees (DTs), the dependencies and features of individual threats could be identified for
further attack event analysis. For the regression model, the residual sum of squares can be used as
splitting criteria, as shown in Eq. (1).

RSS =
∑
left

(
yi − y∗

L

)2 +
∑
right

(
yi − y∗

R

)2
(1)

in which y∗
L denotes y value for the left node, y∗

R denotes y value for the right node.

DT is widely used in feature selection tasks because of its nature. It can be created using given
features {x1, x2, . . . , xN}, entropy, and labelled classes. The RF consists of a collection of DTs, each of
which is built using a subset of training data and randomly selected features. In the classification, Gini
criterion is used as
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Gini = NL

K∑
k=1

pL
k

(
1 − pL

k

) + NR

K∑
k=1

pR
k

(
1 − pR

k

)
(2)

in which pL
k is the proportion of class k at left node, and pR

k is the proportion of class k at right node.

Individual HCT vector usually has different contributions to an attack event. The importance of
an individual threat Tm could be evaluated by impurity importance [86].

p∑
m=1

Imp (Tm) = I
(
f1, . . . , fp; A

)
(3)

in which the fi, (i = 1, . . . , p) are the features of HCT, and A is a potential hybrid attack of HCT.

Wali et al. [87] proposed an IDS based on RF, which can explain the correlation degree between
attack and features.

5.1.2 Grey Relational Analysis (GRA) Based HCT Modelling

GRA is a modelling technique used to evaluate the correlation between variables or factors. It is
insensitive to the quantity of samples, has no specific requirements on the data distribution pattern,
and has a relatively small computational load.

Environment modelling. Existing threat analysis methods focus on the connection between object
features and attacks at a macro level. Attack classification models are often established by analyzing
the overall pattern of data samples under different states. For instance, common approaches are general
machine learning models using network traffic, system calls, or physical signals to establish classifiers
to detect diverse individual attacks. However, the network system structures are becoming increasingly
complex, and the proliferation of heterogeneous hardware and software may render the identification
of abnormal states more challenging. Furthermore, threat actors lean toward employing hybrid attack
methods to achieve their objectives and ambiguous the clues to disrupt investigations. For example,
attackers may utilize adversarial attacks to generate attack vectors to evade IDS detection, where
the real attack chain can be concealed. Moreover, attacks may have distinct patterns in different
network objects, potentially introducing disruptions to attack modelling. To adapt the HCT, this paper
proposes a novel threat modelling concept by introducing HCT context modelling, considering the
inherent status of different components (Including hardware, software and communication protocols)
as the context of the attack model within the threat analysis process. There are two main steps to
generate the model.

Data aggregation. Given a dataset D = {d1, . . . , dh}, where h is the number of samples. dh =
(fh(1), . . . , fh(k)), k is the number of features. Aggregate the data according to the type of device, the
environment matrix E = (e1, . . . , en), where n denotes the number of object types in the entire system.
The device element vector en = (vn(1), . . . , vn(k)), where vn represents the attributes value of the device
n, it can be the mean value of the device attributes in their normal state.

Given an attack set A = (a1, . . . , am), in which m denotes the number of attack samples. The attack
element vector am = (vm(k), . . . , vm(k)), where vm represents the average attributes value of the attack
type m. To quantify the degree of differentiation between attacks and normal states across different
targets, The initial context matrix can be defined by Eq. (4). Where smn refers to the probability of
device en being attacked by attack am, S can be generated using Algorithm 1.
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Algorithm 1: Generate matrix S
Input A, E;
Output S;

1: i ← 1, j ← 1, q ← 1
2: while i ≤ m do
3: while j ≤ n do
4: sij ← 0
5: while q ≤ k do
6: sij ← sij + |ai(k) − ej(k)|
7: end while
8: end while
9: end while

S =
⎛
⎝

s11 . . . s1n

. . . . . . . . .

sm1 . . . smn

⎞
⎠ (4)

Because S may contain heterogeneous data sources, normalization is required before GRA with
Eqs. (5) and (6), as

si(j) = si(j)
s̄i

(5)

s̄i =
∑n

j=1 si(j)

n
(6)

Normalization is used to eliminate the scale differences between different feature values, assuring
that each feature contributes equally to the model and preventing certain features from retaining an
excessive impact or being neglected.

Grey relational analysis (GRA). GRA is an effective method for correlation analysis, and it has
achieved good performance in various areas. The GRA is defined as Eq. (7).

ζi(j) = Fmin + ρ · Fmax

|s0(j) − si(j)| + ρ · Fmax

(7)

Fmin = miniminj|s0(j) − si(j)| (8)

Fmax = maximaxj|s0(j) − si(j)| (9)

where s0(j) = (s0(j), . . . , s0(j)) is a selected reference feature vector, which could be the max value of
feature k selected from S. si(j) = (si(1), . . . , si(j)), i = 1, 2, . . . , n are the alternative feature vector. The
GRA ζi(j) indicates the distinguishability of attack i on device j. ρ is resolution factor, the smaller
ρ means greater resolution. Generally ρ = 0.5. ζi(j) indicates the distinguishability of an attack on
different components. The proposed model provides an environment abstraction for HCTs, describing
the correlation of each attack and IIoT object using a matrix. It enables a more effective assessment of
ambiguous attack nodes during the security information and event management (SIEM) phase. The
Fig. 7 presents an example of HCT context modelling. The directed graph refers to a threat chain.
ti, i = 1, 2, 3 in Fig. 7 correspond to Threati, i = 1, 2, 3 in Table 2 which indicates the correlated
degree of a threat with a device. ti(j), i = 1, 2, 3; j = 1, 2, . . . , 5. Refers to Threati occurs on device
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Dj, ti(j, k), i = 1, 2, 3; j = 1, 2, . . . , 5; k = 1, 2, . . . , 5. Refers to Threati moves between Devices Dj and
Dk.

Figure 7: Graph-based model for HCT context

Table 2: HCT context modelling example

D1 D2 D3 D4 D5

Threat1 High Hig Medium Medium Low
Threat2 Medium Medium High High Low
Threat3 Low High Low High Low

E.g., in Table 2, device D1 has a high correlation with threat Threat1, and a low correlation with
threat Threat3. The threat node in Fig. 7 indicates the threat type , source, and destination. In Fig. 7,
threat node t3(2) indicates device D2 is under Threat3, threat node t2(3, 5) refers Threat2 moves from
device D3 to device D5. The dotted-line nodes represent nodes added based on the HCT context model.
For a given real threat chain (t2(3, 5), t2(3, 4), t3(4)), node t2(3, 4) is not detected by intrusion detection
while t3(4) need a former node. Since Threat2 shows a high correlation with device D2 and device D3,
and its former node t2(3, 5) and forward node t3(4) has been detected, the missing node t2(3, 4) could
be recovered by HCT environment model. Node t3(3) surrounded by grey rectangles is suggested to
be a false positive because it is not involved in a threat chain and has a low correlation with device D3

in the HCT environment model.

5.2 HCTs Detection Framework
Detecting HCTs in IoT requires a comprehensive and multi-faceted approach that involves a

combination of techniques, including machine learning. As shown in Fig. 8, the framework consists
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of four main components: data processing, vulnerability analysis for HCTs, HCTs sequence detection
and attack correlation analysis.

Figure 8: HCTs detection and classification

5.2.1 Data Processing

The heterogeneity of IIoT determines that the generated data may be in various formats, numerical
scales, and quantities. There are several methods for handling heterogeneous data. The regular
approach is to extract heterogeneous data to a standardized format manually. Al-Hawawreh et al. [43]
proposed a pre-processed dataset called X-IIoTID, which is represented as a Comma-separated values
file with features extracted from network flow and system logs. They correlated data from different
sources based on device and time. In addition to manually extracting features from multi-source data,
some studies have employed ensemble learning methods to evaluate the extracted data for optimizing
feature selection [88,89]. However, manual feature extraction requires interdisciplinary expertise and
incurs high labour costs.

Some other research uses anomaly alerts from different components as inputs to the detection
model. Namely, a series of anomaly detection models are created firstly for different devices or systems,
and then attacks are further detected based on the information contained in the anomaly alerts [90,91].
Although alert-based schemes automate the feature selection, they highly rely on the accuracy of
anomaly detection methods, which may limit their performance. Park et al. [92] proposed a generative
model-based intrusion detection scheme that can abstract data from multiple sources and extract
features automatically. Since generative models can abstract different information and generate data,
mitigating the data imbalance issue, they could be promising solutions for IIoT data processing.
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5.2.2 Vulnerability and Malware Analysis for HCTs

Vulnerability detection is a vital part of cyber security strategies, typically aimed at identifying
potential risks within a system. Additionally, it can be utilized to improve intrusion detection [93].
Morin et al. [94] introduced a framework that combines IDS and vulnerability detection, effectively
alleviating false alarms. Furthermore, it can be integrated with IDS to correlate alerts with detected
vulnerabilities, providing interpretability for alarms from IDS, therefore automating the information
security control process [95].

Mokhov et al. indicated [96] that NLP technologies are promising for vulnerability detection task.
In previous research, a commonly used approach is to convert source code into abstract syntax tree and
then employ deep learning methods [97,98], such as RNN, LSTM, CNN and their variants [99,100] to
analyze semantic information. In recent years, with the rise of large-scale language models, an increas-
ing number of researchers are attempting to apply them to the field of security. Ziems et al. developed
[101] a vulnerability dataset for C programming language, and designed several deep learning models.
The best model achieved over 93% accuracy. They claimed that maintaining contextual information
is important for vulnerability hunting. Thapa et al. considered [102] the similarity between high-level
programming languages and natural languages and evaluated the performance of large-scale language
models based on transformers for vulnerability detection task. The results indicate that language
models have better performance than conditional NLP methods such as LSTM.

HaddadPajouh et al. [103] proposed a malware detection method based on instruction machine
code analysis using RNN. They collected malware and benign software designed for a 32-bit ARM
processor and then decompiled the application to machine code sequences in each sample, which were
then used to build a TF-IDF bag-of-words model. A bidirectional LSTM model was used to analyse
the machine code sequence of the sample to obtain a malicious code detector. Their method reached
98% accuracy in detecting new malware. The malware detection or malicious code identification task
was regarded as a sequence-to-one NLP problem. RNN has the ability to analyse the semantics of a
piece of code according to the context of the machine code sequence so that it can effectively classify
whether the sample contains malicious code. However, the dataset used in this work is relatively small,
with less than 300 positive and negative samples, which could be insufficient in the real software
environment. In practice, imbalanced samples are a persistent problem in current datasets for threat
detection tasks because abnormal data is relatively difficult to obtain [104].

Nguyen et al. mentioned that the dynamic analysis can effectively monitor the network behaviour
and system calls of malware [105]. Using the PSI-graph [105], a hybrid detection method was proposed
to detect the botnet in the IIoT. The PSI-graph can extract the information related to the attack phase
in the binary file based on the life-cycle of the botnet, such as IP address, usernames, passwords, and
malicious payload. Since PSI-graph only focuses on specific steps in the botnet, it can significantly
reduce computational complexity compared to conventional function call graphs. Different from
[105,106], it adds the information obtained by dynamic analysis into PSI-graphs. The graphs were
converted into feature vectors to train the ML model (DF, RF, SVM, KNN and bagging). The
classifiers were evaluated on ARM and MIPS datasets, and the results showed that the hybrid method
is superior to conventional methods in terms of time consumption and detection accuracy.

5.2.3 Automated HCT Modelling

An appropriate modelling scheme can integrate system status, vulnerability analysis and threat
intelligence to enhance the efficiency and accuracy of attack detection [107]. Wang et al. proposed
[108] a method based on CVSS score to construct the dependency relationships between exploits.
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Existing modelling approaches usually require a manual process, and additional steps are required
to adopt a threat model to attack analysis [26]. Some research has implemented automation at specific
stages of modelling, and their combination may hold promise. Firstly, identified vulnerabilities could
be regarded as features of IIoT components. Secondly, L1 regularization could be adapted to select
proper features for GRA-based environment model, which can be employed to model the relevance
degree between different devices and attacks [109]. Sun et al. proposed [110] a Bayesian based method
to predict zero-day threat path by analysing system calls.

5.2.4 HCTs Sequence Detection

Sequence models take advantage of contextual awareness and have shown tremendous potential
for threat detection in recent years. They can capture more potential patterns from continuous data,
enabling better threat detection performance [111]. RNN is a classic sequence model that has been
used for threat detection [69]. However, RNN and its variants are extremely time-consuming and
computationally consuming models. The requirement for high-performance processors and stable
power supply are usually not feasible in IoT devices. Wani et al. [112] developed a Software-defined
networking (SDN)-based IDS for resource-constrained environments.

Li et al. [113] proposed an improved LSTM model, quasi-recurrent neural network (QRNN), to
mitigate the time complexity. the proposed model combines the advantages of CNN and LSTM to
preserve timing dependencies in parallel. Not only is it 16 times faster to train and test than ordinary
LSTM, but it also has better accuracy. Al-Taleb et al. [114] proposed a hybrid neural network which
combined QRNN and CNN to identify cyber threats in smart city environments. The one-dimensional
convolutional layer and the one-dimensional pooling layer in this model are used to reduce the
dimensionality of the features, and the QRNN is used to save the time series state. Furthermore, a
dropout layer is added to prevent overfitting. This model achieves 99.99% accuracy on both the BoT-
IoT and TONIoT datasets, and the FPR is 0.3% and 1%, respectively. In addition, the author compares
the time taken by the model to use LSTM and QRNN. On the BoT-IoT dataset, using QRNN is about
23% faster, and on the TONIoT dataset, LSTM is 23% slower.

The CNN model could also be sequence-sensitive when structured as one dimension. It has
relatively low computational complexity and is often used in combination with other models [115,116].
Kale et al. [117] proposed a framework that contains three algorithms working together to detect
anomalies and specify the type of attack in network traffic. There are three main steps in this
framework. Firstly, the K-means algorithm is used to identify significantly abnormal traffic samples.
Then, those samples classified as benign will be filtered again by GANomaly to further select
anomalies. Lastly, in the final stage, all detected abnormal samples would be classified by a trained
CNN to distinguish different types of attacks. The methods used in the first two stages are based on
unsupervised learning. CNN is trained using the labelled dataset to recognize the kinds of attacks. The
performance of this framework is evaluated on NSL-KDD, CIC-IDS2018, and TONIoT. According
to the shown result, the AUC scores of this proposed method in the first two stages on three datasets
are 91.6%, 70.3%, and 91.8%. The Log-loss scores for CNN are 17.87%, 13.88%, and 1.3%.

Transformer-based models take advantage of their capability for parallel computing over
long-term sequence input, achieving dramatic performance in anomaly detection tasks. Casaju-
Setien et al. [118] proposed a simplified transformer model which uses single-head self-attention
to learn the normal network flow pattern in a time window. The accuracy of this model reached
97.44% over the WUSTL IIoT dataset. However, anomaly detection methods based on time series are
typically restricted to situations where the number of abnormal samples is much less than normal. Once
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anomalies occur in a dense manner, their performance may be adversely impacted. Xiao et al. [119]
proposed a diffusion-based scheme to mitigate model bias when anomaly concentration arises. This
method allows the model to choose samples flexibly based on changes in anomaly density. This
method demonstrates superior stability and performance across five datasets. It achieved 94.19%,
97.66%, 97.95%, 96.95% and 92.75% in F1 score over five datasets (MSL, SWaT, PSM, SMAP, SMD).

5.2.5 Attack Correlation Analysis

Effectively analyzing the correlations between attacks can identify the trajectory of attackers,
enabling the timely discovery of potential threats [120]. Establishing a comprehensive view of attacks
helps security teams understand new attack trends to prevent future attacks proactively. Moreover,
accurately tracing the cause and effect of attacks can also reduce false positives [121].

Khosravi et al. [122] employed the Security Information Event and Management system to analyse
causal relationships among detected attacks. The proposed scheme achieved 87.10% recall in their
experiment. Jadidi et al. [120] proposed a causal anomaly detection method for the ICS. It discovers the
correlation of malicious activities by analyzing ICS logs. This method reached 98% accuracy on attack
causal diagnosis. Kumar et al. [123] proposed an advanced threat detection method for IIoT called
RAPTOR, which is designed to recognize different attack phases and generate an attack graph by
analyzing IDS alerts. Hu et al. [124] proposed a Markov chain-based attack correlation mining model,
which integrates information from IDS, firewalls and other network components and automates the
IDS alert correlation process. Ding et al. [40] developed an attribute correlation-based algorithm to
recognize the hybrid threat in IoT systems. The core of the proposed approach is the grey correlation
analysis algorithm, which is an effective theory for analyzing the impact of unknown factors on the
system. The proposed work can successfully identify 92.3% of correlated attack routes in maximum.

6 Challenges and Future Directions
6.1 Challenges

According to a review of current research on threat modelling, detection and complex attack
analysis, there have been notable advancements in IIoT security in the last decades. However, some
challenges remain.

• Increasing attack surfaces could raise challenges for IIoT security. An HCT involves multiple
cyber attack vectors, each of which may have diverse behavioural characteristics based on
different attack surfaces and their targets. This circumstance poses challenges to threat detection
and alert analysis, especially in IIoT environments where a multitude of attack surfaces
may obscure attack chains. A significant amount of time and human resources for evidence
collection, correlation, and source tracing to investigate and manage security events.

• Dynamic and evolving attack tactics could be a challenge from adversaries. Actors of HCTs
usually adapt their tactics to evade detection. Kumari et al. [125] proposed a community
deception method to prevent a node from being recognized by community detection algorithms.
Detecting novel combinations of known attack vectors is very challenging, which may impact
the attack correlation analysis. Moreover, HCTs involve insider involvement or insider threats,
where authorised users or employees intentionally or unintentionally facilitate the attack.
Compared to external adversaries, internal threat recognition requires a great deal of effort.

• Lack of comprehensive data sharing, effective detection of combined threats requires sharing
threat intelligence and data across different organizations, sectors, and regions. However, there
are challenges in sharing sensitive information due to legal, privacy, and competitive concerns,
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limiting the collective ability to detect and respond to combined threats. In addition, the lack
of unified hybrid attack vector signatures may pose challenges to HCT detection.

6.2 Future Directions
Addressing these challenges requires close collaboration between security organisations and

communities. The future research directions in HCT detection include:

• Explainable machine learning techniques are being extensively explored to detect HCTs, which
involves advanced detection algorithms to analyse large volumes of data, feature extraction
approaches, etc. Using interpretable models to correlate and analyse system components,
potential threats, and attack alerts may be a direction for the future. It can reveal attack surfaces
to support security event investigations and benefit false positive mitigation to some extent.

• Context-aware behaviour analysis, HCTs often involve a series of distinct behaviours, such
as reconnaissance and exploiting vulnerabilities. Behaviour, including application behaviour,
user activity, and the interplay between different components, will play a key role in detecting
suspicious activities and identifying HCTs. Context-aware behaviour analysis will detect and
correlate events related to HCTs by considering the relationships, dependencies, and contextual
information of different features.

• HCTs modelling and simulation involves feature extraction, attack pattern analysis and system
environment emulation. An appropriate modelling scheme could effectively abstract complex
HCT vectors from limited data.

It is important to develop innovative techniques to effectively detect and respond to the HCTs in
the rapidly evolving IIoT.

7 Conclusion

HCT detection in IIoT systems is a critical and complex problem that requires integrated
consideration. There are many promising methods which take advantage of the powerful data analysis
capability of ML and can be used to protect the security of IIoT.

This survey discusses HCTs in IIoT from an integrated view. Firstly, his paper introduced the
characteristics and security requirements of the IIoT system and discussed the emerging HCTs.
Secondly, HCT modelling schemes are introduced in detail from threat and system environment
aspects. A framework is proposed to integrate the HCT model and HCT detection methods. It involves
data processing, HCT modelling, threat detection, and threat correlation analysis. The promising
technologies are introduced based on the components of this framework, providing a handbook for
future IIoT security solution development. Specifically, a test use case was introduced to demonstrate
the effectiveness of the proposed HCT framework. Finally, this paper explains the challenges and
provides several potential future directions for IIoT security.
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